JoVE Logo
Faculty Resource Center

Sign In





Representative Results





Developmental Biology

Induction of Acute Skeletal Muscle Regeneration by Cardiotoxin Injection

Published: January 1st, 2017



1Stem Cell Fate Laboratory, Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, 2School of Medicine and Surgery, University of Milano-Bicocca, 3Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute

This manuscript describes a detailed protocol to induce acute skeletal muscle regeneration in adult mice and subsequent manipulations of the muscles, such as dissection, freezing, cutting, routine staining, and myofiber cross-sectional area analysis.

Skeletal muscle regeneration is a physiological process that occurs in adult skeletal muscles in response to injury or disease. Acute injury-induced skeletal muscle regeneration is a widely used, powerful model system to study the events involved in muscle regeneration as well as the mechanisms and different players. Indeed, a detailed knowledge of this process is essential for a better understanding of the pathological conditions that lead to skeletal muscle degeneration, and it aids in identifying new targeted therapeutic strategies. The present work describes a detailed and reproducible protocol to induce acute skeletal muscle regeneration in mice through a single intramuscular injection of cardiotoxin (CTX). CTX belongs to the family of snake venom toxins and causes myolysis of myofibers, which eventually triggers the regeneration events. The dynamics of skeletal muscle regeneration is evaluated by histological analysis of muscle sections. The protocol also illustrates the experimental procedures for dissecting, freezing, and cutting the Tibialis Anterior muscle, as well as the routine Hematoxylin & Eosin staining that is widely used for subsequent morphological and morphometric analysis.

Mammalian adult skeletal muscles are formed by groups of fascicules of multinucleated muscle cells (myofibers) that are specialized for contraction. Each myofiber is an elongated syncytium, surrounded by the sarcolemma (plasmatic membrane) and containing myofibrils, which are made up of regularly and repeatedly organized contractile proteins (actin and myosin filaments). In adult life and in resting conditions, skeletal muscles have a very low turnover of their myonuclei1; indeed, the myonuclei, which are located at the periphery of the myofiber, under the sarcolemma, are arrested in the G0 phase of the cell cycle and are unable to proliferate1,2....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All experiments were conducted in strict accordance with the institutional guidelines for animal research and approved by the Department of Public Health, Animal Health, Nutrition and Food Safety of the Italian Ministry of Health in accordance with the law on animal experimentation. Cervical dislocation procedures may vary from institution to institution based on IACUC or its equivalent requirements.

1. Cardiotoxin Injection in the Tibialis Anterior Muscle

  1. Prepare a 10 μM working solution of .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

H&E staining allows for the evaluation of the morphology of the regeneration process at specific time points during skeletal muscle regeneration. Figure 3 shows the time course analysis performed on injured TA muscles of wild type mice. Muscles have been isolated at 3, 7, 15, and 30 days after CTX injection, as schematized in Figure 3A. Representative pictures of H&E-stained transverse sections show the dynamics of skeletal muscle repair over time.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Here, we describe a protocol to induce acute injury in skeletal muscle (i.e., the intramuscular injection of CTX). It is widely used as a powerful tool to study the dynamics of skeletal muscle regeneration in vivo. CTX injection induces the degeneration of muscle fibers, which is caused by the depolarization of the sarcolemma and the contraction of the fibers12, and triggers the cascade of events that leads to muscle regeneration. Skeletal muscles are dissected at desired time points after th.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank the Animal House and the Integrated Microscopy Facilities of IGB-CNR. This work has benefited from research funding from the European Community's Seventh Framework Programme in the project ENDOSTEM (Activation of vasculature associated stem cells and muscle stem cells for the repair and maintenance of muscle tissue, grant agreement number 241440), the Italian Ministry of Education-University-Research (MIUR-PRIN2 010-2011) to G.M. and S.B. and PON Cluster IRMI to G.M., and the CARIPLO foundation to G.M. and S.B.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Cardiotoxin from Naja mossambica mossambica SIGMA ALDRICH C9759
Syringe For Insulin BD Micro-Fine+ Needle 30 G X 8 mm - Da 0,3 ml BD 324826
Tragacanth Gum MP BIOMEDICALS,LLC 104792
2-Methylbutane (Isopentane) SIGMA ALDRICH 78-78-4.
OCT Killik Solution For Inclusion Cryostat Bio-optica  05-9801
Feather Microtome Blade S35 Bio-optica  01-S35
Glass Slide Superfrost Plus Menzel-Gläser 09-OPLUS
Dumon #5 Mirror Finish Forceps  2BIOLOGICAL INSTRUMENTS 11251-23
Scissors Straight Sharp/Sharp 2BIOLOGICAL INSTRUMENTS 15024-10
Scissors Noyes Straight 2BIOLOGICAL INSTRUMENTS 15012-12
Fine Iris Scissors Straight Sharp/Sharp 10,5 Cm 2BIOLOGICAL INSTRUMENTS 14094-11
Eukitt Bio-optica 09-00100
Slide Coverslip BIOSIGMA VBS651
Xylene SIGMA ALDRICH 214736
Ethanol 100% sigma-Aldrich 02860-2.5L
Hematoxyline J.T. BAKER 3873
Cryostat LEICA CM3050 S

  1. Morgan, J. E., Partridge, T. A. Muscle satellite cells. Int J Biochem Cell Biol. 35 (8), 1151-1156 (2003).
  2. Roca, I., Requena, J., Edel, M. J., Alvarez-Palomo, A. B. Myogenic Precursors from iPS Cells for Skeletal Muscle Cell Replacement Therapy. J Clin Med. 4 (2), 243-259 (2015).
  3. Cheung, T. H., Rando, T. A. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 14 (6), 329-340 (2013).
  4. Dumont, N. A., Wang, Y. X., Rudnicki, M. A. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development. 142 (9), 1572-1581 (2015).
  5. Hawke, T. J., Garry, D. J. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol. 91 (1985), 534-551 (1985).
  6. Saclier, M., et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells. 31 (2), 384-396 (2013).
  7. Pillon, N. J., Bilan, P. J., Fink, L. N., Klip, A. Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab. 304 (5), E453-E465 (2013).
  8. Bentzinger, C. F., Wang, Y. X., Dumont, N. A., Rudnicki, M. A. Cellular dynamics in the muscle satellite cell niche. EMBO Rep. 14 (12), 1062-1072 (2013).
  9. Costamagna, D., Costelli, P., Sampaolesi, M., Penna, F. Role of Inflammation in Muscle Homeostasis and Myogenesis. Mediators Inflamm. 2015, (2015).
  10. Charge, S. B., Rudnicki, M. A. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 84 (1), 209-238 (2004).
  11. Arnold, L., et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 204 (5), 1057-1069 (2007).
  12. Chang, C. C., Chuang, S. T., Lee, C. Y., Wei, J. W. Role of cardiotoxin and phospholipase A in the blockade of nerve conduction and depolarization of skeletal muscle induced by cobra venom. Br J Pharmacol. 44 (4), 752-764 (1972).
  13. Meng, H., et al. Tissue triage and freezing for models of skeletal muscle disease. J Vis Exp. (89), (2014).
  14. Mann, C. J., et al. Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle. 1 (1), (2011).
  15. Pessina, P., et al. Novel and optimized strategies for inducing fibrosis in vivo: focus on Duchenne Muscular Dystrophy. Skelet Muscle. 4 (1), 7 (2014).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved