A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This manuscript describes a detailed protocol to induce acute skeletal muscle regeneration in adult mice and subsequent manipulations of the muscles, such as dissection, freezing, cutting, routine staining, and myofiber cross-sectional area analysis.
Skeletal muscle regeneration is a physiological process that occurs in adult skeletal muscles in response to injury or disease. Acute injury-induced skeletal muscle regeneration is a widely used, powerful model system to study the events involved in muscle regeneration as well as the mechanisms and different players. Indeed, a detailed knowledge of this process is essential for a better understanding of the pathological conditions that lead to skeletal muscle degeneration, and it aids in identifying new targeted therapeutic strategies. The present work describes a detailed and reproducible protocol to induce acute skeletal muscle regeneration in mice through a single intramuscular injection of cardiotoxin (CTX). CTX belongs to the family of snake venom toxins and causes myolysis of myofibers, which eventually triggers the regeneration events. The dynamics of skeletal muscle regeneration is evaluated by histological analysis of muscle sections. The protocol also illustrates the experimental procedures for dissecting, freezing, and cutting the Tibialis Anterior muscle, as well as the routine Hematoxylin & Eosin staining that is widely used for subsequent morphological and morphometric analysis.
Mammalian adult skeletal muscles are formed by groups of fascicules of multinucleated muscle cells (myofibers) that are specialized for contraction. Each myofiber is an elongated syncytium, surrounded by the sarcolemma (plasmatic membrane) and containing myofibrils, which are made up of regularly and repeatedly organized contractile proteins (actin and myosin filaments). In adult life and in resting conditions, skeletal muscles have a very low turnover of their myonuclei1; indeed, the myonuclei, which are located at the periphery of the myofiber, under the sarcolemma, are arrested in the G0 phase of the cell cycle and are unable to proliferate1,2.
Skeletal muscles have the peculiar ability to regenerate following damage, reaching homeostasis after several events of tissue remodeling that are tightly related to each other. After an acute injury or trauma, degeneration is induced, followed by regeneration processes that involve different cell populations, including a resident population of muscle cells, the satellite cells (SCs). Indeed, in the absence of any environmental stimuli, the satellite cells are in a quiescent state and are located in a specialized niche between the sarcolemma and the basal lamina3,4. Following an injury or disease, SCs become activated, proliferate, migrate to the damaged areas, and eventually differentiate, giving rise to newly forming myofibers5. Activated SCs establish cross-talk with different cell populations, mainly inflammatory cells, which are recruited in the site of trauma6-8. This cross-talk allows the cells to follow a regulated paradigm by which molecular signals drive structural modifications, eventually leading to homeostasis9. Besides SCs, inflammatory and interstitial cells, angiogenic processes, and re-innervation events are also involved, acting in a coordinated manner to repair this highly organized and specialized structure.
There is great interest in studying different aspects of skeletal muscle regeneration, not only to understand the physiology of the muscle, but also to improve therapeutic strategies that require deeper knowledge of the whole process. Several experimental approaches are currently available to study the identity and function of the different cell populations, the signaling pathways, and the molecular mechanisms involved. Mouse models of acute injury represent a powerful tool to investigate many aspects of this process. Different commonly used techniques to induce acute muscle damage allow researchers to follow the regeneration process in vivo, from the very early stages to the end of the process. This protocol describes the steps from the intramuscular injection of snake venom-derived cardiotoxin (CTX), which induces myolysis and triggers the regeneration process, up to the analysis of tissue samples. Following CTX injection, mice can be sacrificed at different time points depending on experimental requirements, and the skeletal muscles can be dissected and processed for further analysis. Finally, we describe the staining protocol of tissue sections to perform morphological observations and basic quantitative analyses. This protocol allows for the study of acute skeletal muscle regeneration in vivo in a highly reproducible manner10.
All experiments were conducted in strict accordance with the institutional guidelines for animal research and approved by the Department of Public Health, Animal Health, Nutrition and Food Safety of the Italian Ministry of Health in accordance with the law on animal experimentation. Cervical dislocation procedures may vary from institution to institution based on IACUC or its equivalent requirements.
1. Cardiotoxin Injection in the Tibialis Anterior Muscle
2. Tibialis Anterior Isolation
Note: Muscles can be isolated at different time points after cardiotoxin injection according to experimental requirements.
3. Fresh Frozen Muscle Technique
4. Cryostat Sectioning of Frozen Muscles
5. Routine Histological Staining (Hematoxylin & Eosin Stains)
Note: Several histological stains can be performed on muscle sections according to the analysis. A routine histological stain for morphological and morphometric analysis is the Hematoxylin & Eosin (H&E) bichromic stain. The hematoxylin stains the nuclei a deep purple. Nuclear staining is counterstained with eosin (pink/red), which stains eosinophilic structures, such as the myofibers in the cytoplasm.
H&E staining allows for the evaluation of the morphology of the regeneration process at specific time points during skeletal muscle regeneration. Figure 3 shows the time course analysis performed on injured TA muscles of wild type mice. Muscles have been isolated at 3, 7, 15, and 30 days after CTX injection, as schematized in Figure 3A. Representative pictures of H&E-stained transverse sections show the dynamics of skeletal muscle repair over time...
Here, we describe a protocol to induce acute injury in skeletal muscle (i.e., the intramuscular injection of CTX). It is widely used as a powerful tool to study the dynamics of skeletal muscle regeneration in vivo. CTX injection induces the degeneration of muscle fibers, which is caused by the depolarization of the sarcolemma and the contraction of the fibers12, and triggers the cascade of events that leads to muscle regeneration. Skeletal muscles are dissected at desired time points after th...
The authors have nothing to disclose.
We thank the Animal House and the Integrated Microscopy Facilities of IGB-CNR. This work has benefited from research funding from the European Community's Seventh Framework Programme in the project ENDOSTEM (Activation of vasculature associated stem cells and muscle stem cells for the repair and maintenance of muscle tissue, grant agreement number 241440), the Italian Ministry of Education-University-Research (MIUR-PRIN2 010-2011) to G.M. and S.B. and PON Cluster IRMI to G.M., and the CARIPLO foundation to G.M. and S.B.
Name | Company | Catalog Number | Comments |
Cardiotoxin from Naja mossambica mossambica | SIGMA ALDRICH | C9759 | |
Syringe For Insulin BD Micro-Fine+ Needle 30 G x 8 mm - Da 0.3 mL | BD | 324826 | |
Tragacanth Gum | MP BIOMEDICALS,LLC | 104792 | |
2-Methylbutane (Isopentane) | SIGMA ALDRICH | 78-78-4. | |
OCT Killik Solution For Inclusion Cryostat | Bio-optica | 05-9801 | |
Feather Microtome Blade S35 | Bio-optica | 01-S35 | |
Glass Slide Superfrost Plus | Menzel-Gläser | 09-OPLUS | |
Dumon #5 Mirror Finish Forceps | 2BIOLOGICAL INSTRUMENTS | 11251-23 | |
Scissors Straight Sharp/Sharp | 2BIOLOGICAL INSTRUMENTS | 15024-10 | |
Scissors Noyes Straight | 2BIOLOGICAL INSTRUMENTS | 15012-12 | |
Fine Iris Scissors Straight Sharp/Sharp 10.5 cm | 2BIOLOGICAL INSTRUMENTS | 14094-11 | |
Eukitt | Bio-optica | 09-00100 | |
Slide Coverslip | BIOSIGMA | VBS651 | |
Xylene | SIGMA ALDRICH | 214736 | |
Ethanol 100% | sigma-Aldrich | 02860-2.5L | |
Hematoxyline | J.T. BAKER | 3873 | |
Eosin | SIGMA ALDRICH | HT110116 | |
Cryostat | LEICA | CM3050 S |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved