A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Herein we describe a novel method to generate antigen-specific T cell receptors (TCRs) by pairing the TCRα or TCRβ of an existing TCR, possessing the antigen-specificity of interest, with complementary hemichain of the peripheral T cell receptor repertoire. The de novo generated TCRs retain antigen-specificity with varying affinity.
T cell receptors (TCRs) are used clinically to direct the specificity of T cells to target tumors as a promising modality of immunotherapy. Therefore, cloning TCRs specific for various tumor-associated antigens has been the goal of many studies. To elicit an effective T cell response, the TCR must recognize the target antigen with optimal affinity. However, cloning such TCRs has been a challenge and many available TCRs possess sub-optimal affinity for the cognate antigen. In this protocol, we describe a method of cloning de novo high affinity antigen-specific TCRs using existing TCRs by exploiting hemichain centricity. It is known that for some TCRs, each TCRα or TCRβ hemichain do not contribute equally to antigen recognition, and the dominant hemichain is referred to as the centric hemichain. We have shown that by pairing the centric hemichain with counter-chains differing from the original counter-chain, we are able to maintain the antigen specificity, while modulating its interaction strength for the cognate antigen. Thus, the therapeutic potential of a given TCR can be improved by optimizing the pairing between the centric and counter hemichains.
T cell receptors (TCRs) are heterodimeric adaptive immune receptors expressed by T lymphocytes, composed of a TCRα and TCRβ chain. They are generated via somatic rearrangement of V(D)J gene segments, which produces a highly diverse repertoire capable of recognizing virtually unlimited configurations of HLA/peptide complexes. Clinically, T cells engineered to express clonotypic TCRs specific for tumor-associated antigens have demonstrated efficacy in a variety of cancers1. However, many TCRs cloned for this purpose lack sufficient affinity for the antigen of interest, which limit their therapeutic application.
Here, we describe a method to overcome this limitation for existing TCRs by exploiting chain-centricity. It has been reported that one TCR hemichain could play a more dominant role in recognition of the target antigen2, here termed centricity. Crystal structural analyses have shown that one centric hemichain of a TCR could account for the majority of the footprint on the MHC/peptide complex3,4. Using this concept, we have previously demonstrated that the SIG35α TCRα can pair with a diverse repertoire of TCRβ chains and maintain reactivity against the MART127-35 peptide presented by HLA-A25. Similar results were obtained with the TAK1 TCR, where the centric TCRβ hemichain paired with various TCRα chains and maintained reactivity for the WT1235-243 peptide presented by HLA-A246. Both MART1 and WT1 are tumor-associated antigens. Chain-centricity was also applied to study antigen recognition of CD1d-restricted invariant natural killer (iNKT) TCRs, by pairing the invariant Vα24-Jα18 (Vα24i) TCRα chain of human iNKT TCRs with different Vβ11 TCRβ chains7.
In all cases, we were able to generate a de novo repertoire of TCRs by transducing the centric TCR hemichain to peripheral blood T cells, where the introduced hemichain paired with the endogenous TCRα or TCRβ counter-chains. In essence, the centric hemichain serves as a bait that can be used to identify the appropriate counter-chains, which when paired together form TCRs that maintain the antigen specificity of interest, yet varying in affinity. From these novel repertoires, we were able to isolate clonotypic TCRs with improved interaction strength against the target antigen compared to pre-existing TCRs. Therefore, we believe this method will accelerate the pipeline of identifying optimal TCRs for clinical application.
1. Preparing Retroviral Construct Encoding TCR Hemichain of Interest
2. Generating Stable Packaging Cell Line
NOTE: Both 293GPG and PG13 cells are adherent. Culture cells in Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal calf serum (FCS) and 50 μg/ml gentamicin. Culture 293GPG cells with 1 μg/ml tetracycline before transfection. Incubate cells at 37 °C with 5% CO2 between all steps.
3. Activation and Transduction of Human T cells
NOTE: Human samples are obtained and used in accordance with the institutional ethics committee approved protocols. Culture primary human cells in Roswell Park Memorial Institute (RPMI) medium supplemented with 10% human serum instead of FCS and 50 μg/ml gentamicin. Incubate cells at 37 °C with 5% CO2 between all steps.
4. Cloning De Novo TCR Counter-hemichains
5. Reconstituting Novel Antigen-specific TCR Clones
NOTE: Culture Jurkat 76 cells and subsequent cell lines in RPMI medium supplemented with 10% FCS and 50 μg/ml gentamicin. Incubate cells at 37 °C with 5% CO2 between all steps.
Without prior knowledge of which hemichain is chain-centric, the TCRα and TCRβ chain should be separately cloned and transduced to peripheral blood T cells, which was done in the case of HLA-A24/WT1 reactive TAK1 TCR (Figure 1). Transduction of TAK1β yielded a noticeably higher frequency of antigen-specific T cells. Conversely, transduction of a non-centric hemichain would not yield de novo multimer positive T cells, as seen with TAK1α chain (...
The first requirement for successful application of this method is achieving sufficient transduction efficiency of primary T cells with the hemichain of interest. In our experience, the combination of using PG13 as packaging cell line and pMX as retroviral vector results in stable and efficient expression of the introduced gene in human primary T cells. PG13 packaging cells can be single-cell cloned to select for high-titer packaging cells to improve transduction efficiency. Furthermore, proliferation of T cells is also ...
The University Health Network has filed a patent related to this methodology on which N.H., M.N., and T.O. are named as inventors. The other authors have no financial conflicts of interest.
This work was supported by NIH grant R01 CA148673 (NH); the Ontario Institute for Cancer Research Clinical Investigator Award IA-039 (NH); BioCanRX Catalyst Grant (NH); The Princess Margaret Cancer Foundation (MOB, NH); Canadian Institutes of Health Research Canada Graduate Scholarship (TG); Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship (TG); Province of Ontario (TG, MA); and Guglietti Fellowship Award (TO). HLA and CD1d monomers were kindly provided by the NIH tetramer core facility.
Name | Company | Catalog Number | Comments |
0.05% Trypsin-EDTA | Wisent Bioproducts | 325-043-CL | |
293GPG cells | Generated by Ory et al. (ref 8) | ||
Agar | Wisent Bioproducts | 800-010-CG | |
Agarose | Wisent Bioproducts | 800-015-CG | |
Ampicillin sodium salt | Wisent Bioproducts | 400-110-IG | |
Chloroform | BioShop | CCL402 | |
Deoxynucleotide (dNTP) Solution Mix | New England Biolabs | N0447L | |
DMEM, high glucose, pyruvate | Life Technologies | 11995065 | |
EcoRI | New England Biolabs | R0101S | |
EZ-10 Spin Column DNA Gel Extraction Kit | BS353 | ||
Fetal Bovine Serum | Life Technologies | 12483020 | |
Ficoll-Paque Plus | GE Healthcare | 17-1440-02 | |
Filter | Corning | 431220 | 0.45 mm pore SFCA membrane |
FITC-conjugated anti-human CD271 (NGFR) mAb | Biolegend | 345104 | clone ME20.4 |
FITC-conjugated anti-human CD3 mAb | Biolegend | 300440 | clone UCHT1 |
Gentamicin | Life Technologies | 15750078 | |
Gibson Assembly Master Mix | New England Biolabs | E2611L | used for multi-piece DNA assembly |
HLA-A2 pentamer | Proimmune | depends on antigenic peptide | HLA-A2/MART1 multimer used here was purchased from Proimmune |
HLA/CD1d monomers | NIH Tetramer Core Facility | multimerize monomers according to protocol provided by NIH tetramer core facility | |
Human AB serum | Valley Biomedical | HP1022 | |
human CD3 microbeads | Miltenyi Biotec | 130-050-101 | |
IOTest Beta Mark TCR V beta Repertoire Kit | Beckman Coulter | IM3497 | |
Jurkat 76 cells | Generated by Heemskerk et al. (ref 10) | ||
LB Broth | Wisent Bioproducts | 800-060-LG | |
LS MACS column | Miltenyi Biotec | 130-042-401 | |
NEB 5-alpha Competent E. coli | New England Biolabs | C2987I | |
NEBuffer 3.1 | New England Biolabs | B7203S | used for EcoRI and NotI digestion |
NotI | New England Biolabs | R0189S | |
NucleoBond Xtra Midi | Macherey-Nagel | 740410 | used for plasmid purification |
PC5-conjugated anti-human CD8 mAb | Beckman Coulter | B21205 | clone B9.11 |
PG13 cells | ATCC | CRL-10686 | |
Phusion HF Buffer Pack | New England Biolabs | B0518S | |
Phusion High-Fidelity DNA Polymerase | New England Biolabs | M0530L | |
pMX retroviral vector | Cell Biolabs | RTV-010 | |
polybrene | Sigma-Aldrich | H-9268 | |
Proleukin (recombinant human interleukin-2) | Novartis | by Rx only | equivalent product can be purchased from Sigma-Aldrich |
Purified anti-human CD3 antibody | Biolegend | 317301 | clone OKT3, used for T cell stimulation |
RPMI 1640 | Life Technologies | 11875119 | |
SA-PE | Life Technologies | S866 | used for multimerizing monomers from NIH tetramer core facility |
SMARTer RACE 5'/3' Kit | Clontech | 634858 | |
Sterile water | Wisent Bioproducts | 809-115-LL | |
SuperScript III First-Strand Synthesis System | Invitrogen | 18080051 | for cDNA synthesis |
Syringe | BD | 301604 | 10 ml, slip tip |
Tetracycline hydrochloride | Sigma-Aldrich | T7660 | |
TransIT-293 | Mirus Bio | MIR 2700 | used to transfect 293GPG cells |
TRIzol Reagent | Life Technologies | 15596026 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved