A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We report a method for drug sorption evaluation using a pump and model drugs (diazepam and tacrolimus). After drug analysis using high-performance liquid chromatography, drug concentrations and sorption levels in the tubes of administration sets are calculated.
Administration sets are delivery tools for the direct application of drugs into the body and are composed of a spike, a drip chamber, tubes, Luer adapters (connectors), a needle cover for protection, and other accessories. Drug sorption to tubes of administration sets is a critical issue in terms of safety and efficacy. Although drug sorption is an important factor in the quality of an administration set, there are no standard evaluation methods for the regulation of drug sorption to the tubes. Here, we describe an evaluation protocol for drug sorption to tubes of administration sets. Tubes made of polyvinyl chloride (PVC)- and non-PVC-based polymeric materials were cut to 1 m in length. Diazepam and tacrolimus were used as model drugs. In the kinetic sorption study, we selected the drug concentration and flow rate based on the clinical usage of these drugs. After the dilution of each drug in a glass bottle, the diluted drug solution was delivered through tubes of administration sets using a pump. Samples were collected in amber vials at appropriate time points and the drugs were analyzed using high-performance liquid chromatography. Drug concentrations and sorption levels to tubes of the administration sets were calculated. Acceptable criteria to ensure the quality of administration sets are recommended.
Administration sets are composed of a spike, a drip chamber, tubes, Luer adapters (connectors), and a needle cover for protection. Other accessories, such as an airway check valve, a regulating clamp, an in-line filter, a Y-tube with cap (an injection port), and a needle, can also be attached to administration sets. Drug sorption to tubes is a critical issue in the delivery of injectable drugs1. Sorption describes the adsorption of a drug to the polymer surface and the absorption of a drug into the polymeric matrix2. Drug sorption to tubes in administration sets causes unpredictable drug loss and makes it difficult to control the delivered drug concentration. Drug sorption to polymeric tubes is therefore a major impediment to the precise transfer of injectable drugs into the body. However, there are no standard methods or regulatory guidelines for the evaluation of drug sorption to tubes in administration sets.
The levels of drug sorption to tubes in administration sets have been reported using various evaluation methods1,2,3,4,5. Test methods and model drugs are key factors in sorption evaluation. The pump method1,3 and drip method4,5 have been widely used for sorption tests. In general, the pump method should be used in the case of drugs with low concentrations and low flow rates as the infusion conditions. Using various evaluation methods, many studies of drug sorption have been reported for polyvinyl chloride (PVC)- and non-PVC-based tubes in administration sets1,2,3,5. Many sorptive drugs can be selected to investigate whether the tubes of the administration sets have drug sorption potential or not. Diazepam (Figure 1a)1, 2, tacrolimus (Figure 1b)5, nitroglycerin2, and cyclosporin A3 are representative drugs with high sorption in PVC- and non-PVC-based tubes.
For the evaluation of drug sorption to the tubes, test conditions such as flow rate and drug concentration are based on the clinical use of the selected drugs1, 6, 7. In the case of diazepam, a high concentration of 100 µg/mL was used at a flow rate of 1 mL/min to mimic the initial dose for the treatment of status epilepticus1. For tacrolimus, a concentration of 10 µg/mL was delivered at a flow rate of 10 mL/h. Dextrose solution (5%) was used for the dilution of drug injections, and tube length was fixed at 1 m. Glass bottles and vials should be used to prevent additional sorption during the experiment and storage.
In this study, we conducted a kinetic sorption study with the model drugs, diazepam and tacrolimus, using a pump method. Specific details of this protocol, from tube preparation to sorption evaluation, were described previously. Methods for the evaluation of drug sorption have already been used to confirm drug properties for injections and to recommend the clinical use of injections with administration sets on a case-by-case basis1,2,3,4,5,6,7. This protocol may be used as a standard technique for the sorption evaluation of administration sets. International standards for the evaluation of drug sorption to tubes may be necessary to ensure the safety and efficacy of drug delivery.
1. Preparation of Tubes in Administration Sets
NOTE: Precisely perform the cutting step to eliminate the effect of differences in tube length on drug sorption.
2. Dilution of Drug Injections
NOTE: Use a glass bottle (1 L) as the container for the injected drug solution. Perform the dilution step precisely. Verify the composition of the marketed drug product and use the same batch number for a whole experimental set.
3. Kinetic Sorption Study Using an Infusion Pump
NOTE: Confirm the tube-dependent flow rate using a pump prior to the sorption test due to the hardness of tubes. Collect samples at precise time points and use glass bottles and vials to prevent additional drug sorption during storage. Perform the test as shown in Figure 2. Protect the drug solution against light if the drug has photosensitivity. Perform the experiments in triplicate.
4. Analysis of Drug Using High-performance Liquid Chromatography (HPLC)
NOTE: Recommended HPLC methods for drug analysis are described in references 1, 8,9. Use tandem mass spectrometry (MS/MS) and immunoassay after sample preparation as alternative methods10, 11. Perform the experiments in triplicate.
5. Calculation of Drug Concentration and Sorption Level
The sorption to tubes in the administration set was kinetically monitored using the model drugs, diazepam (Figure 1a) and tacrolimus (Figure 1b), and the pump method (Figure 2). Diluted drug (Figure 2a) was passed through PVC- and non-PVC-based tubes (Figure 2b) at a fixed flow rate using an infusion pump (Figure 2c). The glass bottle was opened slightly to allow the insertion of the admi...
Drug sorption to administration sets is a cause of unexpected drug loss in intravenous drug delivery. During sorption, drugs are generally partitioned to polymeric materials of tubes at the early phase of infusion; after sorption equilibrium is reached, the delivered amount of drug is stabilized1. The sorption levels of drugs should be evaluated and minimized. Several evaluation methods for drug sorption have been studied, such as a pump method and a drip method. Compared to the drip method, the p...
The authors have nothing to disclose.
This work was supported by the Korea Ministry of Environment (MOE) as part of the "The advancement of scientific research and technological development in environmental science program (E315-00015-0414-2)."
Name | Company | Catalog Number | Comments |
PVC IV sets | Becton Dickinson (BD) Co. Ltd. (Franklin Lakes, NJ, USA) | Internal diameter: 2.54 mm | |
PU IV sets | Tianjin Hanaco Medical (THM) Co.Ltd. (Tianjin, China) | Non-PVC Internal diameter: 2.54 mm | |
Non-PVC Polyolefin IV sets | Polyscientech, Co. Ltd (Anseong, Korea) | Non-PVC [PE elastomer/PP elastomer/PB elastomer (25/50/25, weight ratio) blend] Internal diameter: 2.54 mm | |
Syringe | Korea Vaccine Co. Ltd. (Seoul, Korea) | KOVAX-SYRINGE 1 mL 26G 1/2" | |
Daewon diazepam injection | Daewon Pharma. Co. Ltd. (Hwaseong, Gyunggi, Korea) | 5 mg/mL, total 2 mL Batch No.: P003 Composition: diazepam, propylene glycol, ethanol, benzyl alcohol, sodium benzoate, bezoic acid, water for injection | |
Tacrobel injection | Chong Keun Dang, Co. Ltd. (Seoul, Korea) | 5 mg/mL, total 1 mL Batch No.: AG002 Composition: tacrolimus hydrate, polyoxyl 60 hydrogenated castor oil (HCO-60), dehydrated alcohol | |
5% Dextrose | JW Pharmaceutical (Seoul, Korea) | 500 mL | |
5% Dextrose | Daehan Pharmaceutical (Seoul, Korea) | 200 mL | Bottle (glass) |
Amber vials | 20 mL | Glass | |
Terumo infusion pump | Terumo (Medical Corp., USA) | TE-135 | |
HPLC system with UV detector | Agilent (Santa Clara, CA, USA) | Agilent 1260 | |
CAPCELL PAK C18 column | Shiseido (Japan) | 90404 | 1.5 mm x 250 mm, 5 μm |
Diazepam | From Daewon Pharma. Co., Ltd. | ||
Tacrolimus | Teva Czech industries (Czech Republic) | From Chong Keun Dang, Co. Ltd. | |
Acetonitrile | Burdick and Jackson Co., Ltd. (MI, USA) | 3/1/9017 | |
Methanol | Burdick and Jackson Co. Ltd. (MI, USA) | AH230-4 | |
Water | Burdick and Jackson Co. Ltd. (MI, USA) | 3/1/4218 | |
Sodium dihydrogen phosphate | Sigma (St. Louis, MO, USA) | ||
Phosphoric acid | Sigma (St. Louis, MO, USA) |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved