A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
Two methods are presented here to determine intestinal barrier function. An epithelial meter (volt/ohm) is used for measurements of transepithelial electrical resistance of cultured epithelia directly in tissue culture wells. In mice, the FITC-dextran gavage method is used to determine the intestinal permeability in vivo.
The intestinal barrier defends against pathogenic microorganism and microbial toxin. Its function is regulated by tight junction permeability and epithelial cell integrity, and disruption of the intestinal barrier function contributes to progression of gastrointestinal and systemic disease. Two simple methods are described here to measure the permeability of intestinal epithelium. In vitro, Caco-2BBe cells are plated in tissue culture wells as a monolayer and transepithelial electrical resistance (TER) can be measured by an epithelial (volt/ohm) meter. This method is convincing because of its user-friendly operation and repeatability. In vivo, mice are gavaged with 4 kDa fluorescein isothiocyanate (FITC)-dextran, and the FITC-dextran concentrations are measured in collected serum samples from mice to determine the epithelial permeability. Oral gavage provides an accurate dose, and therefore is the preferred method to measure the intestinal permeability in vivo. Taken together, these two methods can measure the permeability of the intestinal epithelium in vitro and in vivo, and hence be used to study the connection between diseases and barrier function.
Intestinal epithelial cells are not only responsible for the absorption of nutrients, but also form an important barrier to defend against pathogenic microorganisms and microbial toxins. This intestinal barrier function is regulated by tight junction permeability and epithelial cell integrity1,2,3, and dysfunction of the epithelial barrier function is associated with inflammatory bowel disease (IBD). The perijunctional actomyosin ring (PAMR) lies within the cell that is closely contiguous to the tight junctions. The contraction of the PAMR, which is regulated by the myosin light chain (MLC), is crucial for the regulation of tight junction permeability4,5,6,7,8,9,10. Tumor necrosis factor (TNF) is central to intestinal barrier loss by upregulating intestinal epithelial MLC kinase (MLCK) expression and inducing occludin internalization11,12,13.
Ions such as Na+ and Cl- can cross the paracellular space by either the pore or leak pathway14. In a "leaky" epithelium, changes in TER primarily reflect altered tight junction permeability. TER measurement is a commonly used electrophysiological approach to quantify tight junction permeability, primarily to Na+ and Cl-, based on the impedance of cell monolayers. Diverse cell types, including intestinal epithelial cells, pulmonary epithelial cells, and vascular endothelial cells, have been reported for TER measurements. Advantages of this method are that TER measurements are non-invasive and can be used to monitor live cells in real-time. In addition, the TER measurement technique is useful for drug toxicity studies15.
Caco-2BBe cells are human epithelial colorectal adenocarcinoma cells with a structure and function similar to the differentiated small intestinal epithelial cells: for example, these cells have microvilli and enzymes associated with small intestinal brush border. Therefore, cultured Caco-2BBe monolayers are utilized as an in vitro model for testing barrier function.
In mice, one way to study intestinal paracellular permeability is by measuring the ability of FITC-dextran to cross from the lumen into the blood. Thus, the intestinal permeability can be assessed by gavaging FITC-dextran directly into mice and measuring the fluorescence within the blood. The following protocol describes two simple methods to assess intestinal epithelium permeability both in vitro and in vivo.
This study was approved by the Animal Care and Use Protocol of Cambridge-Suda Genomic Resource Center (CAM-SU), Soochow University.
1. Plating and Maintenance of Caco-2bbe on Porous Polycarbonate Membranes
2. Use of Epithelial Meter (Volt/Ohm) for Measuring TER
NOTE: After about 3 weeks of culture on polycarbonate membranes, Caco-2BBe cells are ready for TER measurement.
3. Murine Model of Dextran Sulphate Sodium (DSS)-induced Colitis
4. Measuring the Epithelial Barrier Permeability in DSS-induced Colitis Mice
In culture, Caco-2BBe cells grow as a monolayer and slowly differentiate into mature absorptive enterocytes that have brush borders. In this protocol, Caco-2BBe cells were plated with a high density on polycarbonate membranes, and cells reached 100% confluency one day after seeding. However, cells are undifferentiated at this stage: To fully differentiate the cells, the media is changed every 2-3 days for 3 weeks. Cells were stained with nuclei and F-actin stains to show the differences b...
There are several critical steps in the protocol. Caco-2BBe (brush border-expressing) cells are always used for TER measurement, selected from the Caco-2 cell line for expression of brush-border proteins. Caco-2BBe cells have a villus absorptive phenotype when fully-differentiated (after about 3 weeks of culture post-confluence)17. It is necessary to avoid contamination during the measurement, and to sterilize the electrode. Because the procedure is non-sterile, measurements can only be performed ...
The authors declare no competing financial interests.
We thank Dr. Jerrold R. Turner, from Brigham and Women's Hospital, Harvard Medical School, for his generous help in completing this study. This work is supported by the National Natural Science Foundation of China (grant number 81470804, 31401229, and 81200620), the Natural Science Foundation of Jiangsu Province (grant number BK20180838, and BK20140319), The Research Innovation Program for College Graduates of Jiangsu Province (grant number KYLX16-0116), Advanced Research Projects of Soochow University (grant number SDY2015_06), and Crohn's & Colitis Foundation Research Fellowship Award (grant number 310801).
Name | Company | Catalog Number | Comments |
22 G gavage needle | VWR | 20068-608 | |
4 kDa FITC-dextran | Sigma | 46944 | |
Avertin | Sigma | T48402 | |
Black 96-well plates for fluorescence | Fisher | 14-245-197A | |
C57/B6 mice | Nanjing Biomedical Research Institute of Nanjing University | ||
Caco-2BBe cells | ATCC | CRL-2102 | |
Dextran sulphate sodium | MP Biomedicals | 2160110 | |
DMED with high glucose and sodium pyruvate | Hyclone | SH30243.01B | |
Epithelial (Volt/Ohm) Meter | Millicell-ERS | MERS00002 | |
Ethanol | Sinopharm ChemicalReagent | 10009218 | |
Falcon tube (15 mL) | Corning | 430791 | |
FBS | Gibco | 10437-028 | |
Fluorescence microscope | Olympus | FV1000 | |
Fluorometer | Biotek | Synergy 2 | |
HBSS | 138 mM NaCl, 0.3 mM Na2HPO4, 0.4 mM MgSO4, 0.5 mM MgCl2, 5.0 mM KCl, 0.3 mM KH2PO4, 15.0 mM HEPES, 1.3 mM CaCl2, 25 mM glucose | ||
IFNg | PeproTech | 315-05-20 | |
Modular Tissue Embedding Center | Leica | EG1150H | |
Serum collection tubes | Sarstedt | 41.1378.005 | |
T75 flask | corning | 430641 | |
TNF | PeproTech | 315-01A | |
Parraffin | Sigma | A6330-1CS | |
Polycarbonate membranes (Transwell) | Costar | 3413 | |
Pressure pump | AUTOSCIENCE | AP-9925 | |
Rotary Microtomy | Leica | RM2235 | |
Trypsin-EDTA | Gibco | 25200-056 | |
Xylene | Sinopharm ChemicalReagent | 10023418 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved