JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Intraoperative Ultrasound in Spinal Surgery

Published: August 17th, 2022

DOI:

10.3791/58080

1Brigham and Women's Hospital, Harvard Medical School

Here, we present a protocol on the use of intraoperative ultrasound in spinal surgery, particularly in cases of intradural lesions and lesions in the ventral spinal canal when using a posterior approach.

Since the 1980s, there have been several reports for the use of intraoperative ultrasound as a useful adjunct in spinal surgery. However, with the advent of newer cutting-edge imaging modalities, the use of intraoperative ultrasound in spine surgery has largely fallen out of favor. Despite this, intraoperative ultrasound continues to provide several advantages over other intraoperative techniques such as magnetic resonance imaging and computed tomography including being more cost-effective, efficient, and easy to operate and interpret. Additionally, it remains the only method for the real-time visualization of soft tissue and pathologies. This paper focuses on the advantages of using intraoperative ultrasound, especially in cases of intradural lesions and lesions ventral to the thecal sac when approaching posteriorly.

Ultrasound is one of the most common diagnostic tools in medicine, particularly for visualizing pathology in the abdomen, limbs, and neck. However, its use to investigate cranial and spinal lesions is not currently widely utilized. In 1978, Reid was the first to report the use of ultrasound to visualize cervical cord cystic astrocytoma1. Here, scans were performed with the patient's neck flexed to allow opening of the intralaminar window. Four years later, in 1982, Dohrmann and Rubin reported the use of ultrasound intraoperatively to visualize the intradural space in 10 patients2. Pathologies identified with intraope....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The protocol illustrated here follows the guidelines of the human research ethics committee at Brigham and Women's Hospital.

1. Preoperative Protocol

  1. Assess patients with spinal pathology in clinic and determine eligibility for spinal surgery. Perform neurological assessment and obtain CT or MRI scan to identify spinal lesion.
  2. Include patients who have an intradural pathology such as schwannoma, ependymoma, meningioma, astrocytoma, etc.; or patients who have .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

On normal spine ultrasound imaging, the dura is an echogenic layer that surrounds the anechoic spinal fluid. The spinal cord is distinguished by its homogenous appearance and low echogenicity which is surrounded by an echogenic rim. This echogenic rim is due to the density shift from the spinal fluid to the spinal cord. The central canal appears as a bright central echo, while exiting nerve roots appear highly echogenic, particularly at the cauda equina16. Intraope.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Intraoperative ultrasound in the spinal surgery has largely fallen out of favor with the advent of newer technology, however, it continues to provide several advantages over the other available imaging modalities such as MRI and CT6,9,16,17,18. In addition to being inexpensive, in this protocol we also show that it is simple to use and can provide visualizatio.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors have no acknowledgements.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Aloka Prosound 5 mobile ultrasound machine Hitachi N/A any comparable devices on the market should suffice
UST-9120 transducer probe. Hitachi UST-9120 Has a 20mm diameter with 10 to 4.4 MHz frequency range (any comparable compatible transducer should suffice).

  1. Reid, M. H. Ultrasonic visualization of a cervical cord cystic astrocytoma. AJR. American Journal of Roentgenology. 131 (5), 907-908 (1978).
  2. Dohrmann, G. J., Rubin, J. M. Intraoperative ultrasound imaging of the spinal cord: syringomyelia, cysts, and tumors--a preliminary report. Surgical Neurology. 18 (6), 395-399 (1982).
  3. Rubin, J. M., Dohrmann, G. J. Use of ultrasonically guided probes and catheters in neurosurgery. Surgical Neurology. 18 (2), 143-148 (1982).
  4. Braun, I. F., Raghavendra, B. N., Kricheff, I. I. Spinal cord imaging using real-time high-resolution ultrasound. Radiology. 147 (2), 459-465 (1983).
  5. Hutchins, W. W., Vogelzang, R. L., Neiman, H. L., Fuld, I. L., Kowal, L. E. Differentiation of tumor from syringohydromyelia: intraoperative neurosonography of the spinal cord. Radiology. 151 (1), 171-174 (1984).
  6. Juthani, R. G., Bilsky, M. H., Vogelbaum, M. A. Current Management and Treatment Modalities for Intramedullary Spinal Cord Tumors. Current Treatment Options in Oncology. 16 (8), 39 (2015).
  7. Knake, J. E., Gabrielsen, T. O., Chandler, W. F., Latack, J. T., Gebarski, S. S., Yang, P. J. Real-time sonography during spinal surgery. Radiology. 151 (2), 461-465 (1984).
  8. Montalvo, B. M., Quencer, R. M., Green, B. A., Eismont, F. J., Brown, M. J., Brost, P. Intraoperative sonography in spinal trauma. Radiology. 153 (1), 125-134 (1984).
  9. Montalvo, B. M., Quencer, R. M. Intraoperative sonography in spinal surgery: current state of the art. Neuroradiology. 28 (5-6), 551-590 (1986).
  10. Pasto, M. E., Rifkin, M. D., Rubenstein, J. B., Northrup, B. E., Cotler, J. M., Goldberg, B. B. Real-time ultrasonography of the spinal cord: intraoperative and postoperative imaging. Neuroradiology. 26 (3), 183-187 (1984).
  11. Mari, A. R., Shah, I., Imran, M., Ashraf, J. Role of intraoperative ultrasound in achieving complete resection of intra-axial solid brain tumours. JPMA. The Journal of the Pakistan Medical Association. 64 (12), 1343-1347 (2014).
  12. Ivanov, M., Budu, A., Sims-Williams, H., Poeata, I. Using Intraoperative Ultrasonography for Spinal Cord Tumor Surgery. World Neurosurgery. 97, 104-111 (2017).
  13. Blumenkopf, B., Daniels, T. Intraoperative ultrasonography (IOUS) in thoracolumbar fractures. Journal of Spinal Disorders. 1 (1), 86-93 (1988).
  14. McGahan, J. P., Benson, D., Chehrazi, B., Walter, J. P., Wagner, F. C. Intraoperative sonographic monitoring of reduction of thoracolumbar burst fractures. AJR. American Journal of roentgenology. 145 (6), 1229-1232 (1985).
  15. Quencer, R. M., Montalvo, B. M., Eismont, F. J., Green, B. A. Intraoperative spinal sonography in thoracic and lumbar fractures: evaluation of Harrington rod instrumentation. AJR. American Journal of roentgenology. 145 (2), 343-349 (1985).
  16. Sosna, J., Barth, M. M., Kruskal, J. B., Kane, R. A. Intraoperative sonography for neurosurgery. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine. 24 (12), 1671-1682 (2005).
  17. Raymond, C. A. Brain, spine surgeons say yes to ultrasound. JAMA. 255 (17), 2258-2262 (1986).
  18. Toktas, Z. O., Sahin, S., Koban, O., Sorar, M., Konya, D. Is intraoperative ultrasound required in cervical spinal tumors? A prospective study. Turkish Neurosurgery. 23 (5), 600-606 (2013).
  19. . . Surgical Approaches to the Spine. , (2015).
  20. Friedman, J. A., Wetjen, N. M., Atkinson, J. L. D. Utility of intraoperative ultrasound for tumors of the cauda equina. Spine. 28 (3), 288-290 (2003).
  21. Zhou, H., et al. Intraoperative ultrasound assistance in treatment of intradural spinal tumours. Clinical Neurology and Neurosurgery. 113 (7), 531-537 (2011).
  22. Harrop, J. S., Ganju, A., Groff, M., Bilsky, M. Primary intramedullary tumors of the spinal cord. Spine. 34, 69-77 (2009).
  23. Quencer, R. M., Montalvo, B. M. Normal intraoperative spinal sonography. AJR. American journal of roentgenology. 143 (6), 1301-1305 (1984).
  24. Aoyama, T., Hida, K., Akino, M., Yano, S., Iwasaki, Y. Detection of residual disc hernia material and confirmation of nerve root decompression at lumbar disc herniation surgery by intraoperative ultrasound. Ultrasound in Medicine & Biology. 35 (6), 920-927 (2009).
  25. Bose, B. Thoracic extruded disc mimicking spinal cord tumor. The Spine Journal: Official Journal of the North American Spine Society. 3 (1), 82-86 (2003).
  26. Harel, R., Knoller, N. Intraoperative spine ultrasound: application and benefits. European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society. 25 (3), 865-869 (2016).
  27. Lazennec, J. Y., Saillant, G., Hansen, S., Ramare, S. Intraoperative ultrasonography evaluation of posterior vertebral wall displacement in thoracolumbar fractures. Neurologia Medico-Chirurgica. 39 (1), 8-15 (1999).
  28. Matsuyama, Y., et al. Cervical myelopathy due to OPLL: clinical evaluation by MRI and intraoperative spinal sonography. Journal of Spinal Disorders & Techniques. 17 (5), 401-404 (2004).
  29. Mueller, L. A., et al. Ultrasound-guided spinal fracture repositioning, ligamentotaxis, and remodeling after thoracolumbar burst fractures. Spine. 31 (20), 739-747 (2006).
  30. Nishimura, Y., Thani, N. B., Tochigi, S., Ahn, H., Ginsberg, H. J. Thoracic discectomy by posterior pedicle-sparing, transfacet approach with real-time intraoperative ultrasonography: Clinical article. Journal of Neurosurgery. Spine. 21 (4), 568-576 (2014).
  31. Randel, S., Gooding, G. A., Dillon, W. P. Sonography of intraoperative spinal arteriovenous malformations. Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine. 6 (9), 539-544 (1987).
  32. Seichi, A., et al. Intraoperative ultrasonographic evaluation of posterior decompression via. laminoplasty in patients with cervical ossification of the posterior longitudinal ligament: correlation with 2-year follow-up results. Journal of Neurosurgery. Spine. 13 (1), 47-51 (2010).
  33. Tian, W., et al. Intraoperative 3-dimensional navigation and ultrasonography during posterior decompression with instrumented fusion for ossification of the posterior longitudinal ligament in the thoracic spine. Journal of Spinal Disorders & Techniques. 26 (6), 227-234 (2013).
  34. Tokuhashi, Y., Matsuzaki, H., Oda, H., Uei, H. Effectiveness of posterior decompression for patients with ossification of the posterior longitudinal ligament in the thoracic spine: usefulness of the ossification-kyphosis angle on MRI. Spine. 31 (1), 26-30 (2006).
  35. Vasudeva, V. S., Abd-El-Barr, M., Pompeu, Y. A., Karhade, A., Groff, M. W., Lu, Y. Use of Intraoperative Ultrasound During Spinal Surgery. Global Spine Journal. 7 (7), 648-656 (2017).
  36. Alaqeel, A., Abou Al-Shaar, H., Alaqeel, A., Al-Habib, A. The utility of ultrasound for surgical spinal decompression. Medical Ultrasonography. 17 (2), 211-218 (2015).
  37. Della Pepa, G. M., et al. Real-time intraoperative contrast-enhanced ultrasound (CEUS) in vascularized spinal tumors: a technical note. Acta Neurochirurgica. 160 (6), 1259-1263 (2018).
  38. Della Pepa, G. M., et al. Integration of Real-Time Intraoperative Contrast-Enhanced Ultrasound and Color Doppler Ultrasound in the Surgical Treatment of Spinal Cord Dural Arteriovenous Fistulas. World Neurosurgery. 112, 138-142 (2018).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved