A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we present our protocol for producing induced erythroid progenitors (iEPs) from mouse adult fibroblasts using transcription factor-driven direct lineage reprogramming (DLR).
Erythroid cell commitment and differentiation proceed through activation of a lineage-restricted transcriptional network orchestrated by a group of cell fate determining and maturing factors. We previously set out to define the minimal set of factors necessary for instructing red blood cell development using direct lineage reprogramming of fibroblasts into induced erythroid progenitors/precursors (iEPs). We showed that overexpression of Gata1, Tal1, Lmo2, and c-Myc (GTLM) can rapidly convert murine and human fibroblasts directly to iEPs that resemble bona fide erythroid cells in terms of morphology, phenotype, and gene expression. We intend that iEPs will provide an invaluable tool to study erythropoiesis and cell fate regulation. Here we describe the stepwise process of converting murine tail tip fibroblasts into iEPs via transcription factor-driven direct lineage reprogramming (DLR). In this example, we perform the reprogramming in fibroblasts from erythroid lineage-tracing mice that express the yellow fluorescent protein (YFP) under the control of the erythropoietin receptor gene (EpoR) promoter, enabling visualization of erythroid cell fate induction upon reprogramming. Following this protocol, fibroblasts can be reprogrammed into iEPs within five to eight days.
While improvements can still be made to the process, we show that GTLM-mediated reprogramming is a rapid and direct process, yielding cells with properties of bona fide erythroid progenitor and precursor cells.
Red blood cells (RBCs) are essential in all vertebrates and make up 84% of all cells of human bodies1. From embryonic to adult life, our health is highly dependent on exact regulation of RBC homeostasis. The ongoing production of mature RBCs throughout development into adulthood is known as erythropoiesis. A major challenge in erythropoiesis research is to define the master regulators that orchestrate RBC development and the switch between primitive and definitive erythropoiesis. Direct lineage reprogramming of erythroid progenitors presents an opportunity to further understand erythroid development in vivo.
Direct lineage reprogramming (DLR), also known as transdifferentiation, is the process of reprogramming one cell type directly into another, bypassing pluripotent and multipotent progenitor stages. DLR has thus far been used to produce numerous cell types including neural2, hematopoietic3,4,5, hepatic6 and nephrotic7, progenitor cells. For developmental biologists, DLR has become an important tool for interrogating aspects of lineage commitment and terminal differentiation processes8,9. DLR can complement and partially replace in vivo studies for understanding mechanisms of cell fate determining factors during development. The DLR protocol for reprogramming to erythroid progenitors described in this paper provides the field a complimentary method for developmental studies of erythropoiesis.
We have previously demonstrated that overexpression of a four-factor cocktail, GATA1, TAL1, LMO2, and c-MYC (GTLM), is sufficient to reprogram both murine and human fibroblasts directly to induced erythroid progenitors (iEPs)10. The GTLM-reprogrammed erythroid cells greatly resemble bona fide primitive erythroid progenitors in terms of morphology, phenotype, and gene expression10. Thus iEPs have limited proliferation capacity and mature to nucleated erythrocytes similar to those transiently produced in the early embryo before onset of definitive erythropoiesis. By making changes in the reprogramming conditions (e.g., point mutations in reprogramming factors or addition of other factors), one can understand how this leads to changes in erythroid development and differentiation. We have for example shown that addition of Klf1 or Myb to the GTLM cocktail changes the globin expression pattern from predominantly embryonic (primitive) to mainly adult (definitive). This finding corroborates the validity of using DLR as a tool for defining developmental factors in erythropoiesis.
Here, we outline the process of generating iEPs from mouse tail tip fibroblasts (TTF). In our representative results, we performed the reprogramming on fibroblasts from the erythroid lineage-tracing mice (Epor-Cre R26-eYFP) which express the yellow fluorescent protein (eYFP) from the Rosa26 locus in all cells that have expressed the erythropoietin receptor, allowing easy visualization of commitment to the erythroid lineage. Using this method, YFP positive (EpoR+) cells are present as early as five days after transduction. This protocol, therefore, offers a quick and robust technique for the generation of erythroid progenitors in vitro.
1. Establishment and Maintenance of Primary Mouse Tail Tip Fibroblast Cultures
2. Retrovirus Production
3. GTLM transduction and iEP harvest
Here we present a reproducible protocol for the production of iEPs from adult fibroblasts using transcription factor-driven DLR. We evaluate the cell reprogramming using flow cytometry, colony-forming assays, and gene expression analysis. In order to assist in the visualization of the conversion to erythroid cell fate, we performed the reprogramming on fibroblasts from the erythroid lineage-tracing mice (Epor-Cre R26-eYFP) which express the yellow fluorescent protein (eY...
Overexpression of a four-factor cocktail, GATA1, TAL1, LMO2, and c-MYC (GTLM), is sufficient to reprogram murine and human fibroblasts directly to iEPs10. The reprogrammed erythroid cells greatly resembled bona fide erythroid progenitors in terms of morphology, phenotype, gene expression, and colony-forming ability. This finding corroborates the rationale of using direct ...
The authors have no conflicts of interest to report.
We thank Evelyn Wang and Gregory Hyde (Whitehead Institute, Cambridge, MA) for cloning and Harvey Lodish (Whitehead Institute) for providing many of the plasmids used for generating the retroviral library. We thank Kavitha Siva and Sofie Singbrant (Department of Molecular Medicine and Gene Therapy, Lund University), Göran Karlsson and Shamit Soneji (Department of Molecular Hematology, Lund University) for their roles in description of iEP production. We would also like to acknowledge and thank Julian Pulecio (Centre of Regenerative Medicine, Barcelona Biomedical Research Park), Violeta Rayon-Estrada (The Rockefeller University, New York), Carl Walkley (St. Vincent's Institute of Medical Research and Department of Medicine, St Vincent's Hospital, University of Melbourne), Ángel Raya (Catalan Institution for Research and Advanced Studies, Barcelona), and Vijay G. Sankaran (Broad Institute of the Massachusetts Institute of Technology and Harvard, Cambridge) for their previous contributions to this work. This work was supported by the Ragnar Söderberg Foundation (to J.F.); the Swedish Research Council (to J.F.); Stiftelsen Olle Engkvist Byggmästare (to J.F.); the Swedish Foundation for Strategic Research (to J.F.); Åke Wiberg's Foundation (to J.F.); a Marie Curie integration grant (to J.F.).
Name | Company | Catalog Number | Comments |
DMEM without sodium pyruvate | GE Life Sciences | SH30022.01 | Culturing media for PhGP cells |
DMEM with sodium pyruvate | GE Life Sciences | SH30243.01 | Culturing media for tail tip fibroblasts |
StemSpan Serum Free Expansion Media (SFEM) | Stem Cell Technologies | 9650 | Reprogramming media |
Fetal Bovine Serum HyClone | GE Life Sciences | SH30071.03HI | Growth factor |
Penicillin/Streptomycin HyClone (100x) | Ge Life Sciences | SV30010 | Antiboiotic |
Non-Essential Amino Acids (100x) | Thermo Fisher | 11140050 | SNL media is suppplemented with this |
Trypsin HyClone (1x) | GE Life Sciences | SH30042.01 | Cell dissociation agent |
Murine Stem Cell Factor (mSCF) | Peprotech | 250-03 | Added to reprogramming media |
Recombinant Murine Il-3 | Peprotech | 213-13 | Added to reprogramming media |
human recombinant erythropoietin (hrEPO) | Peprotech | 100-64 | Added to reprogramming media |
Dexamethasone | Sigma | 50-02-2 | Added to reprogramming media |
Gelatin from porcine skin | Sigma | 9000-70-8 | Dissovled in dH2O and used for coating plates. Ensure sterility before use. |
Blasticidin S hydrochloride | Sigma | 3/9/3513 | Selection antibiotic. Affects both pro- and eukaryotic cells |
Dulbecco's Phosphate Buffered Saline (DPBS) | Ge Life Sciences | SH30850.03 | Used for washing steps |
Polybrene | Merck | TR-1003-G | Infection / Transfection Reagent |
FuGENE HD Transfection Reagent | Promega | E2311 | Transfection Reagent for PhGP cell line |
Millex-GP Syringe Filter Unit 0.22 µm | Merck | SLGP033RS | Used for filtering virus supernatant |
BD Emerald Hypodermic Syringe | Becton Dickinson | SKU: 307736 | Used for filtering virus supernatant |
100 mm Culture Dish | Corning | 430167 | Cell culture |
6-well plate | Falcon | 10799541 | Cell culture |
Jeweler Forceps #5 | Sklar | 66-7642 | Used for handling small tail fragments |
Sklarlite Iris Scissors | Sklar | 23-1149 | Used for cutting the tail into small pieces |
Lineage Cell Depletion Kit, mouse | Miltenyi Biotec | 130-090-858 | For depletion of hematopoietic cells in fibroblast cultures |
CD117 MicroBeads, mouse | Miltenyi Biotec | 130-091-224 | For depletion of hematopoietic cells in fibroblast cultures |
PheonixGP cells | ATCC | CRL-3215 | retroviral packaging cell line |
EcoPAC vector (pCL-Eco) | Novus Biologicals | NBP2-29540 | retroviral helper vector containing gag and pol genes |
pMX-Gata1 | Cloned in-lab | ||
pMX-Tal1 | Cloned in-lab | ||
pMX-Lmo2 | Cloned in-lab | ||
pMX-cMyc | Cloned in-lab | ||
CellSens Standard 1.6 software | Cytospin analysis software |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved