JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Visualizing and Tracking Endogenous mRNAs in Live Drosophila melanogaster Egg Chambers

Published: June 4th, 2019



1Biological Sciences Department Hunter College, City University of New York, 2Program in Molecular, Cellular, and Developmental Biology, Graduate Center, City University of New York

Here, we present a protocol for the visualization, detection, analysis and tracking of endogenous mRNA trafficking in live Drosophila melanogaster egg chamber using molecular beacons, spinning disc confocal microscopy, and open-source analysis software.

Fluorescence-based imaging techniques, in combination with developments in light microscopy, have revolutionized how cell biologists conduct live cell imaging studies. Methods for detecting RNAs have expanded greatly since seminal studies linked site-specific mRNA localization to gene expression regulation. Dynamic mRNA processes can now be visualized via approaches that detect mRNAs, coupled with microscopy set-ups that are fast enough to capture the dynamic range of molecular behavior. The molecular beacon technology is a hybridization-based approach capable of direct detection of endogenous transcripts in living cells. Molecular beacons are hairpin-shaped, internally quenched, single-nucleotide discriminating nucleic acid probes, which fluoresce only upon hybridization to a unique target sequence. When coupled with advanced fluorescence microscopy and high-resolution imaging, they enable one to perform spatial and temporal tracking of intracellular movement of mRNAs. Although this technology is the only method capable of detecting endogenous transcripts, cell biologists have not yet fully embraced this technology due to difficulties in designing such probes for live cell imaging. A new software application, PinMol, allows for enhanced and rapid design of probes best suited to efficiently hybridize to mRNA target regions within a living cell. In addition, high-resolution, real-time image acquisition and current, open source image analysis software allow for a refined data output, leading to a finer evaluation of the complexity underlying the dynamic processes involved in the mRNA's life cycle.

Here we present a comprehensive protocol for designing and delivering molecular beacons into Drosophila melanogaster egg chambers. Direct and highly specific detection and visualization of endogenous maternal mRNAs is performed via spinning disc confocal microscopy. Imaging data is processed and analyzed using object detection and tracking in Icy software to obtain details about the dynamic movement of mRNAs, which are transported and localized to specialized regions within the oocyte.

Cell biology studies that visualize dynamic events with spatial and temporal resolution have been made possible by the development of fluorescence-based live cell imaging techniques. Presently, in vivo mRNA visualization is achieved via technologies that are based on RNA aptamer-protein interactions, RNA aptamer-induced fluorescence of organic dyes and nucleic acid probe annealing1,2,3. They all offer high specificity, sensitivity and signal-to-background ratio. However, RNA aptamer-centered approaches require extensive genetic manipulation, where a transgene is engi....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Design of MBs for Live Cell Imaging

  1. Fold the target RNA sequence to predict the mRNA target’s secondary structure using the “RNA form” from the mfold server (
    1. Paste/upload the target sequence in FASTA format, select 5 or 10% sub-optimality (structures with a free energy of folding within 5 or 10% of the MFE value, respectively), and adjust the maximum number of computed foldings accordingly (e.g.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Using PinMol, several MBs can be designed for one mRNA target (Figure 1B-C). After synthesis and purification, the selected MBs are characterized and compared using in vitro analysis.

Figure 1
Figure 1: Technique and tissue description for live cell imaging of endogenous mRNAs. .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Live visualization of endogenous mRNA trafficking in Drosophila egg chambers relies on the use of specific, efficient, and nuclease-resistant MBs, which can now be easily designed with PinMol software. MBs are specific probes designed to detect unique sequences within a target mRNA (preferably regions free of secondary structure), making possible highly resolved detection of a transcript. The only limitation when adopting this technique/protocol for other tissues/cell types is the efficiency of MB deliv.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank Salvatore A.E. Marras (Public Health Research Institute Center, Rutgers University) for the synthesis, labeling and purification of molecular beacons, and Daniel St Johnston (The Gurdon Institute, University of Cambridge) for the oskar-MS2/MCP-GFP transgenic fly stock. This work was supported by a National Science Foundation CAREER Award 1149738 and a Professional Staff Congress-CUNY Award to DPB.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Spectrofluorometer Fluoromax-4 Horiba-Jobin Yvon n/a Photon counting spectrofluorometer
Quartz cuvette Fireflysci (former Precision Cells Inc.) 701MFL
Dumont #5 tweezer World Precision Instruments 501985 Thin tweezers are very important to separate out the individual egg chambers
Halocarbon oil 700 Sigma-Aldrich H8898
Cover slip No.1 22 x 40mm VWR 48393-048
Dissecting microscope Leica MZ6 Leica Microsystems Inc. n/a
CO2 fruit fly anesthesia pad Genesee Scienific 59-114
Tris-HCL pH7.5 Sigma-Aldrich 1185-53-1
Magnesium chloride Sigma-Aldrich 7791-18-6
NaCl Sigma-Aldrich 7647-14-5
Spinning disc confocal microscope Leica DMI-4000B inverted microscope equipped with Yokogawa CSU 10 spinning disc Leica Microsystems Inc. n/a
Hamamatsu C9100-13 ImagEM EMCCD camera Hamamatsu n/a
PatchMan NP 2 Micromanipulator Eppendorf Inc. 920000037
FemtoJet Microinjector Eppendorf Inc. 920010504
Injection needle: Femtotips II Eppendorf Inc. 930000043
Loading tip: 20ul Microloader Eppendorf Inc. 930001007
Micro Cover glasses no. 1 or 1.5, 22x40mm VWR 48393-026; 48393-172
Dry yeast Any grocery store n/a
Computer, > 20 GB RAM Although processing can be carried out on most computers, higher capabilities will increase the speed of the processing

  1. Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nature Methods. 6 (5), 331-338 (2009).
  2. Bao, G., Rhee, W. J., Tsourkas, A. Fluorescent probes for live-cell RNA detection. Annual Reviews of Biomedical Engineering. 11, 25-47 (2009).
  3. Mannack, L. V., Eising, S., Rentmeister, A. Current techniques for visualizing RNA in cells. F1000Research. 5, (2016).
  4. Larson, D. R., Zenklusen, D., Wu, B., Chao, J. A., Singer, R. H. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science. 332 (6028), 475-478 (2011).
  5. Bertrand, E., et al. Localization of ASH1 mRNA particles in living yeast. Molecular Cell. 2 (4), 437-445 (1998).
  6. Garcia, J. F., Parker, R. MS2 coat proteins bound to yeast mRNAs block 5' to 3' degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. RNA. 21 (8), 1393-1395 (2015).
  7. Bratu, D. P. Molecular beacons: Fluorescent probes for detection of endogenous mRNAs in living cells. Methods in Molecular Biology. 319, 1-14 (2006).
  8. Bratu, D. P., Cha, B. J., Mhlanga, M. M., Kramer, F. R., Tyagi, S. Visualizing the distribution and transport of mRNAs in living cells. Proceedings of the National Academy of Sciences of the Unites States of America. 100 (23), 13308-13313 (2003).
  9. Tyagi, S., Kramer, F. R. Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnology. 14 (3), 303-308 (1996).
  10. Chen, M., et al. A molecular beacon-based approach for live-cell imaging of RNA transcripts with minimal target engineering at the single-molecule level. Scientific Reports. 7 (1), 1550 (2017).
  11. Liu, Y., et al. Multiplex detection of microRNAs by combining molecular beacon probes with T7 exonuclease-assisted cyclic amplification reaction. Analytical and Bioanalytical Chemistry. 409 (1), 107-114 (2017).
  12. Baker, M. B., Bao, G., Searles, C. D. In vitro quantification of specific microRNA using molecular beacons. Nucleic Acids Research. 40 (2), e13 (2012).
  13. Ko, H. Y., et al. A color-tunable molecular beacon to sense miRNA-9 expression during neurogenesis. Scientific Reports. 4, 4626 (2014).
  14. Vet, J. A., et al. Multiplex detection of four pathogenic retroviruses using molecular beacons. Proceedings of the National Academy of Sciences of the Unites States of America. 96 (11), 6394-6399 (1999).
  15. Li, J., Cao, Z. C., Tang, Z., Wang, K., Tan, W. Molecular beacons for protein-DNA interaction studies. Methods in Molecular Biology. 429, 209-224 (2008).
  16. Li, W. M., Chan, C. M., Miller, A. L., Lee, C. H. Dual Functional Roles of Molecular Beacon as a MicroRNA Detector and Inhibitor. Journal of Biological Chemistry. 292 (9), 3568-3580 (2017).
  17. Kuang, T., Chang, L., Peng, X., Hu, X., Gallego-Perez, D. Molecular Beacon Nano-Sensors for Probing Living Cancer Cells. Trends in Biotechnology. 35 (4), 347-359 (2017).
  18. Ban, K., et al. Non-genetic Purification of Ventricular Cardiomyocytes from Differentiating Embryonic Stem Cells through Molecular Beacons Targeting IRX-4. Stem Cell Reports. 5 (6), 1239-1249 (2015).
  19. Hadjinicolaou, A. V., Demetriou, V. L., Emmanuel, M. A., Kakoyiannis, C. K., Kostrikis, L. G. Molecular beacon-based real-time PCR detection of primary isolates of Salmonella Typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiology. 9, 97 (2009).
  20. McLaughlin, J. M., Bratu, D. P. Drosophila melanogaster Oogenesis: An Overview. Methods in Molecular Biology. 1328, 1-20 (2015).
  21. Bastock, R., St Johnston, D. Drosophila oogenesis. Current Biology. 18 (23), R1082-R1087 (2008).
  22. Rongo, C., Gavis, E. R., Lehmann, R. Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development. 121 (9), 2737-2746 (1995).
  23. Mhlanga, M. M., et al. In vivo colocalisation of oskar mRNA and trans-acting proteins revealed by quantitative imaging of the Drosophila oocyte. PLoS One. 4 (7), e6241 (2009).
  24. Bayer, L. V., Omar, O. S., Bratu, D. P., Catrina, I. E. PinMol: Python application for designing molecular beacons for live cell imaging of endogenous mRNAs. bioRxiv. , (2018).
  25. Marras, S. A., Kramer, F. R., Tyagi, S. Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucleic Acids Research. 30 (21), e122 (2002).
  26. Bratu, D. P., Catrina, I. E., Marras, S. A. Tiny molecular beacons for in vivo mRNA detection. Methods in Molecular Biology. 714, 141-157 (2011).
  27. Dean, D. A. Preparation (pulling) of needles for gene delivery by microinjection. Cold Spring Harbor. 2006 (7), (2006).
  28. Alami, N. H., et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron. 81 (3), 536-543 (2014).
  29. Jackson, S. R., et al. Applications of Hairpin DNA-Functionalized Gold Nanoparticles for Imaging mRNA in Living Cells. Methods in Enzymology. 572, 87-103 (2016).
  30. Zimyanin, V. L., et al. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell. 134 (5), 843-853 (2008).
  31. Catrina, I. E., Marras, S. A., Bratu, D. P. Tiny molecular beacons: LNA/2'-O-methyl RNA chimeric probes for imaging dynamic mRNA processes in living cells. ACS Chemical Biology. 7 (9), 1586-1595 (2012).
  32. Chen, A. K., Behlke, M. A., Tsourkas, A. Efficient cytosolic delivery of molecular beacon conjugates and flow cytometric analysis of target RNA. Nucleic Acids Research. 36 (12), e69 (2008).
  33. Nitin, N., Santangelo, P. J., Kim, G., Nie, S., Bao, G. Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Research. 32 (6), e58 (2004).
  34. Chen, A. K., Behlke, M. A., Tsourkas, A. Avoiding false-positive signals with nuclease-vulnerable molecular beacons in single living cells. Nucleic Acids Research. 35 (16), e105 (2007).
  35. Bevilacqua, P. C., Ritchey, L. E., Su, Z., Assmann, S. M. Genome-Wide Analysis of RNA Secondary Structure. Annual Review of Genetics. 50, 235-266 (2016).
  36. Mhlanga, M. M., Vargas, D. Y., Fung, C. W., Kramer, F. R., Tyagi, S. tRNA-linked molecular beacons for imaging mRNAs in the cytoplasm of living cells. Nucleic Acids Research. 33 (6), 1902-1912 (2005).
  37. Eliceiri, K. W., et al. Biological imaging software tools. Nature Methods. 9 (7), 697-710 (2012).
  38. Bolte, S., Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. Journal of Microscopy. 224 (Pt 3), 213-232 (2006).
  39. Trcek, T., et al. Drosophila germ granules are structured and contain homotypic mRNA clusters. Nature Commununications. 6, 7962 (2015).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved