A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol for a novel gap junction intercellular communication assay designed for the high-throughput screening of gap junction-modulating chemicals for drug discovery and toxicological assessment.
Gap junctions (GJs) are cell membrane channels that allow diffusion of molecules smaller than 1 kDa between adjacent cells. As they have physiological and pathological roles, there is need of high-throughput screening (HTS) assays to identify GJ modulators in drug discovery and toxicology assays. A novel iodide-yellow fluorescent protein-gap junction-intercellular communication (I-YFP-GJIC) assay fulfills this need. It is a cell-based assay including acceptor and donor cells that are engineered to stably express a yellow fluorescent protein (YFP) variant, whose fluorescence is sensitively quenched by iodide, or SLC26A4, an iodide transporter, respectively. When iodide is added to a mixed culture of the two cell types, they enter the donor cells via the SLC26A4 transporter and diffuse to the adjacent acceptor cells via GJs where they quench the YFP fluorescence. YFP fluorescence is measured well by well in a kinetic mode. The YFP quenching rate reflects GJ activity. The assay is reliable and rapid enough to be used for HTS. The protocol for the I-YFP-GJIC assay using the LN215 cells, human glioma cells, is described.
Gap junctions (GJs) act as intercellular channels to allow the diffusion of small molecules of <1 kDa such as nutrients, metabolites, and signaling molecules between adjacent cells. The junctional elements include a hemichannel or connexon in each cell, and each connexon constitutes six connexins (Cxs)1. GJs and Cxs have been used in toxicology assays of carcinogens such as polycyclic aromatic hydrocarbons (PAH), which are GJ inhibitors2,3,4. Disrupted GJIC has been associated with nongenotoxic carcinogenesis5,6. As a potential therapeutic target, GJ involvement has been reported in particular subtypes of seizures7,8, protection from cardiac and brain ischemia/reperfusion injury9, migraine with aura10, drug-induced liver injury6,11, and wound healing12. High-throughput screening (HTS) assays are required to identify GJ-modulating chemicals or antibodies for drug discovery, for toxicology assays, and to identify novel cellular regulators of GJ activity. HTS assays can also be used to investigate structure-activity relationships of GJ modulators2,13,14,15.
Some GJIC assays include dye transfer or dual patch clamp techniques. Lucifer yellow CH (LY) and calcein acetoxymethyl ester (calcein-AM) have been used in dye-transfer assays. Cells are not permeable to LY, which is introduced by microinjection, scrape loading, or electroporation. Once inside the cell, LY spreads into neighboring cells via GJs and GJ activity is assayed by the extent of the LY migration16. Calcein-AM assays usually involve gap-fluorescence recovery after photobleaching17,18. Calcein-AM is a cell-permeant dye that is converted intracellularly into impermeable calcein by an intrinsic esterase. The assay requires a confocal microscope to observe the transfer of calcein-AM into a cell from those surrounding it following laser photobleaching. If functional GJs are present, calcein-AM in adjacent cells enters the photobleached cells and the fluorescence is recovered. GJ activity is assayed by the extent of fluorescence recovery of the photobleached cells. Dye-transfer assays are laborious and time consuming or have low sensitivities. Dual patch clamping is an electrophysiological method that measures junctional conductance. It is relatively sensitive, with a direct dependence of conductance on the number of open GJs19; however, it is technically demanding, time consuming, and expensive20. The I-YFP-GJIC assay was developed for use in HTS.
Figure 1 illustrates the components and steps of the I-YFP GJIC assay, which utilizes acceptor cells expressing an iodide-sensitive YFP variant bearing H148Q and I152L (YFPQL) and donor cells expressing an iodide transporter (SLC26A4)21. The two mutations carried by YFPQL allow quenching of fluorescence by iodide22. Iodides are added to co-cultured acceptor and donor cells; they do not enter the acceptor cells, but are taken up by the SLC26A4 transporters present on the donor cells. Iodides in the donor cells diffuse through functioning GJs into adjacent acceptor cells where they quench the YFPQL fluorescence. If GJs are closed or blocked by inhibitors, iodide cannot enter the acceptor cells to quench the fluorescence. The YFPQL quenching rate reflects GJ activity. The I-YFP GJIC assay procedure is neither complicated nor time consuming. It is compatible with HTS and can be used to test the effects of a large number of compounds on GJ activity in a relatively short period. It requires only acceptor and donor cells, and two balanced salt solutions. The protocol described below is based on LN215 cells whose major Cx is Cx4321. The LN215-YFPQL receptor and LN215-I− donor cells were generated by transduction with lentiviruses expressing YFPQL or SLC26A421,23.
1. Generation of lentiviruses expressing YFPQL and SLC26A4
2. Generation of LN215-YFPQL and LN215-I− cells by lentiviral transduction
3. Preparation of solutions required for the assay
4. Plating the LN215-YFPQL and LN215-I− cells
5. Conducting the I-YFP GJIC assay
NOTE: Use a fluorescence microscope with 20x magnification, and a GFP filter to check the 96-well plates to be sure there are no clumps of LN215-YFPQL or LN215-SLC26A4 cells and that the cell cultures are fully confluent and well distributed before conducting the assay.
6. Calculation of GJIC activity
Twenty-nine 96-well culture plates were used to screen 2,320 chemicals to identify novel GJIC modulators by I-YFP GJIC assay using the LN215-YFPQL and LN215-I− cells. The results obtained with a representative plate are shown in Figure 2. The percentage of YFP fluorescence in each well is shown as a line graph in Figure 2A and the percentage of GJIC activity in each well is shown in th...
The I-YFP-GJIC assay can be used for HTS because it is robust, rapid, and inexpensive. An HTS assay is considered robust if the Z'-factor is above 0.525. See Zhang et al. for a description of the statistical analysis used to assessing the suitability of HTS assays25. When LN215 cells were used, the Z'-factor was >0.5 without any assay optimization. If other cell types are used in the assay and its Z'-factor is <0.5, the robustness can be improved by exte...
The authors have no conflicts of interest to disclose.
This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2011-0023701, 2016R1D1A1A02937397, and 2018R1A6A1A03023718).
Name | Company | Catalog Number | Comments |
96-well plate | SPL | 30096 | |
Calcium chloride (CaCl2) | Sigma | C5670 | I-solution |
D-(+)-Glucose | Sigma | G7021 | C-solution, I-solution |
Dimethyl sulfoxide (DMSO) | sigma | 276855 | |
HEPES | Sigma | RES6003H-B7 | C-solution, I-solution |
Lipofectamine 2000 | Invitrogen | 11668-027 | transfection reagent |
Magnesium chloride hexahydrate (MgCl2 6H2O) | Sigma | M2393 | C-solution |
Microplate reader | BMG LabTech | POLARstar Omega 415-1618 | |
pMD2.G | Addgene | #12259 | |
Polybrene | sigma | H9268 | |
Poly-L-lysine solution | sigma | P4707 | |
Potassium chloride (KCl) | Sigma | P5405 | C-solution, I-solution |
psPAX2 | Addgene | #12260 | |
Puromycin Dihydrochloride | sigma | P8833 | |
Sodium chloride (NaCl) | Sigma | S5886 | C-solution, I-solution |
Sodium hyroxide (NaOH) | Sigma | S2770 | |
Sodium Iodide (NaI) | Sigma | 383112 | I-solution |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved