A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The three critical steps of this protocol are i) developing the right composition and consistency of the cellulose hydrogel ink, ii) 3D printing of scaffolds into various pore structures with good shape fidelity and dimensions and iii) demonstration of the mechanical properties in simulated body conditions for cartilage regeneration.
This work demonstrates the use of three-dimensional (3D) printing to produce porous cubic scaffolds using cellulose nanocomposite hydrogel ink, with controlled pore structure and mechanical properties. Cellulose nanocrystals (CNCs, 69.62 wt%) based hydrogel ink with matrix (sodium alginate and gelatin) was developed and 3D printed into scaffolds with uniform and gradient pore structure (110-1,100 µm). The scaffolds showed compression modulus in the range of 0.20-0.45 MPa when tested in simulated in vivo conditions (in distilled water at 37 °C). The pore sizes and the compression modulus of the 3D scaffolds matched with the requirements needed for cartilage regeneration applications. This work demonstrates that the consistency of the ink can be controlled by the concentration of the precursors and porosity can be controlled by the 3D printing process and both of these factors in return defines the mechanical properties of the 3D printed porous hydrogel scaffold. This process method can therefore be used to fabricate structurally and compositionally customized scaffolds according to the specific needs of patients.
Cellulose is a polysaccharide consisting of linear chains of β (1-4) linked D-glucose units. It is the most abundant natural polymer on Earth and is extracted from a variety of sources, including marine animals (e.g., tunicates), plants (e.g., wood, cotton, wheat straw), and bacterial sources, such as algae (e.g., Valonia), fungi, and even amoeba (protozoa)1,2. Cellulose nanofibers (CNF) and cellulose nanocrystals (CNC) with at least one dimension on nanoscale are obtained through mechanical treatments and acid hydrolysis from cellulose. They not only possess the properties of cellulose, such as potential for chemical modification, low toxicity, biocompatibility, biodegradable and renewable, but it also has nanoscale characteristics like high specific surface area, high mechanical properties, rheological and optical properties. These attractive properties have made CNFs and CNCs suitable for biomedical applications, mainly in the form of 3-dimensional (3D) hydrogel scaffolds3. These scaffolds require customized dimensions with controlled pore structure and interconnected porosity. Our group and others have reported 3D porous cellulose nanocomposites prepared through casting, electrospinning and freeze-drying4,5,6,7,8. However, control on the pore structure and fabrication of complex geometry is not achieved through these traditional techniques.
3D printing is an additive manufacturing technique, in which 3D objects are created layer by layer through the computer-controlled deposition of the ink9. The advantages of 3D printing over traditional techniques includes design freedom, controlled macro and micro dimensions, fabrication of complex architectures, customization and reproducibility. In addition, 3D printing of CNFs and CNCs also offers shear-induced alignments of nanoparticles, preferred directionality, gradient porosity and can easily be extended to 3D bioprinting10,11,12,13,14,15. Recently, the dynamics of CNCs alignment during 3D printing has been reported16,17. Advances in the field of bioprinting have enable 3D printed tissues and organs despite the involved challenge such as choice and concentration of living cells and growth factors, composition of the carrier ink, printing pressures and nozzle diameters18,19,20.
The porosity and compressive strength of cartilage regenerative scaffolds are important properties that dictates its efficiency and performance. Pore size plays an important role for the adhesion, differentiation, and proliferation of cells as well as for the exchange of nutrients and metabolic waste21. However, there is no definite pore size that can be considered as an ideal value, some studies showed higher bioactivity with smaller pores while others showed better cartilage regeneration with larger pores. Macropores (<500 µm) facilitate tissue mineralization, nutrient supply and waste removal while micropores (150-250 µm) facilitate cell attachment and better mechanical properties22,23. The implanted scaffold must have sufficient mechanical integrity from the time of handling, implantation and until the completion of its desired purpose. The aggregate compressive modulus for natural articular cartilage is reported to be in the range of 0.1-2 MPa depending on age, sex and tested location4,24,25,26,27,28,29.
In our previous work11, 3D printing was used to fabricate porous bioscaffolds of a double crosslinked interpenetrating polymer network (IPN) from a hydrogel ink containing reinforced CNCs in a matrix of sodium alginate and gelatin. The 3D printing pathway was optimized to achieve 3D scaffolds with uniform and gradient pore structures (80-2,125 µm) where nanocrystals orient preferably in the printing direction (degree of orientation between 61-76%). Here, we present the continuation of this work and demonstrates the effect of porosity on the mechanical properties of 3D printed hydrogel scaffolds in simulated body conditions. CNCs used here, were earlier reported by us to be cytocompatible and non-toxic (i.e., cell growth after 15 days of incubation was confirmed30). Moreover, scaffolds prepared via freeze-drying using the same CNCs, sodium alginate and gelatin showed high porosity, high uptake of phosphate buffer saline and cytocompatibility toward mesenchymal stem cells5. The goal of this work is to demonstrate the hydrogel ink processing, 3D printing of porous scaffolds and the compression testing. Schematics of the processing route is shown in Figure 1.
1. Preparation of precursors
2. Preparation of hydrogel ink
3. Measurement of rheological properties of hydrogel
NTE: Perform the rheological properties by using a smooth cone-on-plate geometry, CP25-2-SN7617, diameter 25 mm, 2° nominal angle and gap height 0.05 mm at 25 °C.
4. File preparation for 3D Printing
NOTE: Cura 2.4.0 software is used for designing 3D scaffolds (20 mm3) having three types of pores. 1- Uniform pores of 0.6 mm, 2- uniform pores of 1.0 mm and 3- gradient pores of range 0.5-1 mm.
5. 3D printing porous scaffolds
6. Crosslinking of 3D printed scaffolds
7. Compression testing
NOTE: Perform compression tests with 100 N load cell in water at 37 °C.
CNCs based nanocomposite hydrogel ink shows a strong non-Newtonian shear thinning behavior (Figure 2a). The apparent viscosity of 1.55 × 105 Pa.s at a low shear rate (0.001 s-1) drops by five orders of magnitude to a value of 22.60 Pa.s at a shear rate of 50 s-1 (≈50 s-1 being a typical shear rate experienced during 3D printing)31. The hydrogel ink exhibits a viscoelastic solid behavior, as the st...
3D printing requires suitable rheological properties of the hydrogel ink. The high viscosity ink will require extreme pressures for its extrusion while low viscosity ink will not maintain its shape after extrusion. The viscosity of the hydrogel ink can be controlled through the concentration of the ingredients. As compared to our previous work11, the solid content of the hydrogel ink is increased from 5.4 to 9.9 wt% resulting in concentrated hydrogel ink which helps to improve the resolution of th...
The authors have nothing to disclose.
This study is financially supported by Knut and Alice Wallenberg Foundation (Wallenberg Wood Science Center), Swedish Research Council,VR (Bioheal, DNR 2016-05709 and DNR 2017-04254).
Name | Company | Catalog Number | Comments |
60 mL syringe | Structur3D Printing | ||
Alginic acid sodium salt | Sigma-Aldrich | 9005-38-3 | |
Anhydrous calcium chloride | Sigma-Aldrich | 10043-52-4 | |
Clamps, three pronged, Talon | VWR | 241-0404 | 102 mm, Dual adjustment clamp, large, clamp extension 127 mm |
Cura 2.4.0 | Ultimaker | Free slicing software | |
Discov3ry Complete | Structur3D Printing | Ultimaker 2+ 3D printer integrated with Discov3ry paste extruder | |
Gelatin from bovine skin | Sigma-Aldrich | 9000-70-8 | |
Glutaraldehyde solution 50 wt. % in H2O | Sigma-Aldrich | 111-30-8 | |
homogenizer | SPX | APV-2000 | |
Instron 5960 | Instron | Instron 5960, Biopuls Bath, 100 N load cell, 37 °C, | |
Physica MCR 301 rheometer | Anton Paar | CP25-2-SN7617, gap height 0.05 mm, 25 °C | |
Sorvall Lynx 6000 centrifuge | AB Ninolab | s/n 41881692 | F12-rotor (6x500 ml) |
stainless steel nozzle | Structur3D Printing | 800, 600 and 400 µm | |
thingsinverse | MakerBot's | sharing and downloading 3D printable things in form of stl files | |
ultra sonication | Qsonica, LLC | Q500 | |
Unbarked wood chips | Norway spruce(Picea abies) | dry matter content of 50–55% |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved