A subscription to JoVE is required to view this content. Sign in or start your free trial.
This article describes the deuterium oxide dilution technique in two mammals, an insectivore and carnivore, to determine total body water, lean body mass, body fat mass, and water consumption.
Body condition scoring systems and body condition indices are common techniques used for assessing the health status or fitness of a species. Body condition scoring systems are evaluator dependent and have the potential to be highly subjective. Body condition indices can be confounded by foraging, the effects of body weight, as well as statistical and inferential problems. An alternative to body condition scoring systems and body condition indices is using a stable isotope such as deuterium oxide to determine body composition. The deuterium oxide dilution method is a repeatable, quantitative technique used to estimate body composition in humans, wildlife, and domestic species. Additionally, the deuterium oxide dilution technique can be used to determine the water consumption of an individual animal. Here, we describe the adaption of the deuterium oxide dilution technique for assessing body composition in big brown bats (Eptesicus fuscus) and for assessing water consumption in cats (Felis catis).
Body condition scoring systems and body condition indices are common techniques used for assessing the health status or fitness of a species1,2. Many domestic and zoological species have unique body condition scoring (BCS) systems that are used to assess an animal's muscle and superficial fatty tissue3. However, BCS assessment relies upon the evaluator—meaning that BCS is an objective or semiquantitative measurement when assessed by a trained evaluator. In wildlife species, body condition indices are commonly used rather than BCS and are based upon a ratio of body mass to body size or body mass to forearm2. Body condition indicis are often confounded by the effects of foraging and can be confounded by body size as well as statistical and inferential problems4.
An alternative to body condition scoring systems and body condition indices is using a stable isotope to determine body composition. One commonly used stable isotope is deuterium oxide (D2O), a non-radioactive form of water in which the hydrogen atoms are deuterium isotopes. The deuterium oxide dilution method described in this study can be a non-subjective, quantitative, and repeatable technique used to estimate body composition in humans5 and a wide range of species4,6,7. This technique can be advantageous for studying the body composition in wildlife. For example, it can be used to assess longitudinal changes in body composition, such as before and after a management action. However, in some wildlife species deuterium oxide can overestimate the actual water content8. Therefore, when adapting the technique for a species, it is important to validate the method by comparing the deuterium oxide method to carcass analysis for non-endangered species. For threatened and endangered species, a non-destructive method such as dual x-ray absorptiometry (DXA) should be considered as an alternative comparison method to the gold-standard destructive method of complete carcass analysis.
In addition to body composition, the D2O dilution technique can be used to determine the water consumption of an individual animal9. This unique application of D2O can be used to answer not only research questions, but can be useful for assessing the water consumption of individual animal(s) housed in large social settings.
Here, we describe the adaption of the D2O dilution technique for assessing body composition in an insectivore, big brown bats (Eptesicus fuscus), and for assessing water consumption in a carnivore, cats (Felis catis).
All experiments described here were approved by the University of Missouri Animal Care and Use Committee and conducted under the Missouri Department of Conservation (MDC) Wildlife Scientific Collection permit (Permit #16409 and #17649).
1. Preparation of sterile, isotonic, salinated D2O stock solution
2. Preparation of sterile, isotonic, salinated D2O stock working solution for bats
3. Determination of body composition of big brown bats (Eptesicus fucsus) with D2O
NOTE: The stock solution of D2O used in the protocol is 0.1598 g/mL. Before collecting blood, ensure that removing up to 200 µL of blood will be ≤ 10% of the total blood volume of the bat and is within the Institutional Animal Care and Use Committee's (IACUC) established guidelines for blood collection. All animals should be fasted or abdomen palpated to ensure an empty stomach. A recent meal could alter the animal's weight resulting in confounded results since calculations for determining body fat rely upon the body mass of the animal.
4. Fourier-transform infrared spectrophotometry analysis
5. Calculation of body composition
6. Determination of water composition in a carnivore (Felis catus, domestic cat)
The deuterium oxide dilution technique can be used to assess the body composition of a variety of species. To demonstrate the adaptability, we are reporting the first use of the deuterium oxide dilution technique in a North American insectivorous bat species, Eptesicus fuscus, the big brown bat for representative results. A timing plateau was completed by taking pre- and post-D2O injection blood samples as should be done with any species where the equilibration period ...
The use of deuterium oxide to determine TBW has been used since the 1940s17 and is used in humans and a variety of domestic and wildlife species4,6,7. Other non-destructive techniques have been developed including bioelectrical impedance analysis (BIA), DXA, and quantitative magnetic resonance (QMR). Each method has advantages and disadvantages that should be considered before selecting a particular metho...
The authors have nothing to disclose.
This research was supported by MDC Cooperative Agreement (#416), US Forest Service Cooperative Agreement (16-JV-11242311-118), American Academy of Veterinary Nutrition and Waltham/Royal Canin, USA Grant (grant number: 00049049), NIH training grant (grant number: T32OS011126), and the University of Missouri Veterinary Research Scholars Program. The authors thank Shannon Ehlers for pre-reviewing this manuscript. We thank Dr. Robert Backus for providing the D2O standards and allowing use of his laboratory.
Name | Company | Catalog Number | Comments |
0.2 micron non-pyrogenic disk filter | Argos Technologies | FN32S | nylon, 30mm diameter, 0.22um, sterile |
1.5 mL conical microcentrifuge tubes | USA Scientific | 1415-9701 | 1.5 ml self-standing microcentrifuge tube, natural with blue cap |
10 mL sterile glass vial for injection | Mountainside Medical Equipment | MS-SEV10 | clear, sterile glass injection unit |
10 mL syringe | Becton Dickinson | 305219 | sterile 10 mL syringe individually wrapped |
100 mL sterile glass vial for injection | Mountainside Medical Equipment | AL-SV10020 | clear, sterile glass injection unit |
20 gauge needle | Exel | 26417 | needles hypodermic 20g x 1" plastic hub (yellow) / regular bevel |
22 gauge needle | Exel | 26411 | needles hypodermic 22g x 1" plastic hub (black) / regular bevel |
deuterium oxide | Sigma-Aldrich | 151882-25G | 99.9 atom % D |
isofluorane | Vetone | 3060 | fluriso isoflurane, USP |
OMNIC Spectra Software | ThermoFisher Scientific | 833-036200 | FT-IR standard software |
petroleum jelly | Vaseline | 305212311006 | Vaseline, 100% pure petroleum jelly, original, skin protectant |
plastic capillary tubes | Innovative Med Tech | 100050 | sodium heparin anticoagulant, 50 μL capacity, 30 mm length |
Sealed liquid spectrophotometer SL-3 FTIR CAF2 Cell | International Crystal Laboratory | 0005D-875 | 0.05 mm Pathlength |
sodium chloride | EMD Millipore | 1.37017 | suitable for biopharmaceutical production |
Thermo Electron Nicolet 380 FT-IR Spectrometer | ThermoFisher Scientific | 269-169400 | discontinued model, newer models available |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved