A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present a protocol for concentration alternating frequency response analysis of fuel cells, a promising new method of studying fuel cell dynamics.
An experimental setup capable of generating a periodic concentration input perturbation of oxygen was used to perform concentration-alternating frequency response analysis (cFRA) on proton-exchange membrane (PEM) fuel cells. During cFRA experiments, the modulated concentration feed was sent to the cathode of the cell at different frequencies. The electric response, which can be cell potential or current depending on the control applied on the cell, was registered in order to formulate a frequency response transfer function. Unlike traditional electrochemical impedance spectroscopy (EIS), the novel cFRA methodology makes it possible to separate the contribution of different mass transport phenomena from the kinetic charge transfer processes in the frequency response spectra of the cell. Moreover, cFRA is able to differentiate between varying humidification states of the cathode. In this protocol, the focus is on the detailed description of the procedure to perform cFRA experiments. The most critical steps of the measurements and future improvements to the technique are discussed.
Characterizing the dynamic behavior of a PEM fuel cell is important in order to understand which mechanisms dominate the transient operational states lowering the performance of the cell. Electrochemical impedance spectroscopy (EIS) is the most commonly used methodology for studying PEM fuel cell dynamics, due to its ability to separate different process contributions to the overall dynamic performance1,2. However, transient processes with similar time constants are often coupled in the EIS spectra, making it difficult to interpret them. For this reason, in the past transient diagnostic tools based on the appl....
1. Material preparation
The preliminary analysis of the fuel cell dynamics based on EIS spectra is shown in Figure 2. EIS magnitude (Figure 2A) and phase Bode plots (Figure 2B) spectra are measured at three different steady state current densities under galvanostatic control. As expected, all main transient processes are observed: the double layer charging/discharging in the high frequency .......
In contrast to classical EIS, cFRA is a diagnostic tool focused on the characterization of dynamics related to the different mass transport phenomena occurring in the fuel cell. It is not able to detect any transients having a time constant below the oxygen diffusion in the electrode, as for example the charging/discharging of the double layer6. Therefore, unlike EIS where several phenomena are coupled, cFRA can help to identify patterns related to specific dynamics more clearly. This would decrea.......
Max Planck Institute for Dynamics of Complex Technical Systems assisted in meeting the publication costs of this article.
....Name | Company | Catalog Number | Comments |
Membrane Electrode Assemby N115 25,8 cm2 | QuinTech | EC-NM-115 | cathode/anode loding: 1mg Pt/cm2 |
Potentiostat | Metrhohm | PGSTAT302N | |
Booster | Metrohm | BOOSTER20A | |
Retractable fiber oxygen sensor | Pyro Science | OXR430-UHS | |
Dew Point and Temperature Meter | VAISALA | DMT340 | |
Software process control system | Siemens | Simatic PCS 7 | |
Software MATLAB2012a | Mathworks | ||
Hydrogen | Linde | Hydrogen 6.0 | |
Nitrogen | Linde | Nitrogen 5.0 | |
Oxygen | Linde | Oxygen 5.0 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved