Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol details how to implement and perform multi-fiber photometry recordings, how to correct for calcium-independent artifacts, and important considerations for dual-color photometry imaging.

Abstract

Recording the activity of a group of neurons in a freely-moving animal is a challenging undertaking. Moreover, as the brain is dissected into smaller and smaller functional subgroups, it becomes paramount to record from projections and/or genetically-defined subpopulations of neurons. Fiber photometry is an accessible and powerful approach that can overcome these challenges. By combining optical and genetic methodologies, neural activity can be measured in deep brain structures by expressing genetically-encoded calcium indicators, which translate neural activity into an optical signal that can be easily measured. The current protocol details the components of a multi-fiber photometry system, how to access deep brain structures to deliver and collect light, a method to account for motion artifacts, and how to process and analyze fluorescent signals. The protocol details experimental considerations when performing single and dual color imaging, from either single or multiple implanted optic fibers.

Introduction

The ability to correlate neural responses with specific aspects of an animal’s behavior is critical to understand the role a particular group of neurons plays in directing or responding to an action or stimulus. Given the complexity of animal behavior, with the myriad of internal states and external stimuli that can affect even the simplest of actions, recording a signal with single-trial resolution equips researchers with the necessary tools to overcome these limitations.

Fiber photometry has become the technique of choice for many researchers in the field of systems neuroscience because of its relative simplicity compared to other i....

Protocol

All experiments were done in accordance with the Institutional Animal Care and Use Committees of the University of California, San Diego, and the Canadian Guide for the Care and Use of Laboratory Animals and were approved by the Université Laval Animal Protection Committee. 

1. Alignment of the optical path between the CMOS (complementary metal oxide semiconductor) camera and the individual or branching patch cord

  1. Loosen all screws on the 5-axis translator (11,

Representative Results

Neural correlates of behavioral responses can vary depending on a variety of factors. In this example, we used in vivo fiber photometry to measure the activity of axon terminals from the lateral hypothalamic area (LHA) that terminate in the lateral habenula (LHb). Wild type mice were injected with an adeno-associated virus (AAV) encoding GCaMP6s (AAV-hSyn-GCaMP6s) in the LHA and an optic fiber was implanted with the tip immediately above the LHb (Figure 4A). GCaMP6s expressi.......

Discussion

Fiber photometry is an accessible approach that allows researchers to record bulk-calcium dynamics from defined neuronal populations in freely-moving animals. This method can be combined with a wide range of behavioral tests, including “movement heavy” tasks such as forced swim tests2, fear-conditioning18, social interactions1,4, and others7,8

Acknowledgements

This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC: RGPIN-2017-06131) to C.P. C. P. is a FRSQ Chercheur-Boursier. We also thank the Plateforme d’Outils Moléculaires (https://www.neurophotonics.ca/fr/pom) for the production of the viral vectors used in this study.

....

Materials

NameCompanyCatalog NumberComments
1/4"-20 Stainless Steel Cap Screw, 1" LongThorlabsSH25S100
1/4"-20 Stainless Steel Cap Screw, 1/2" LongThorlabsSH25S050
1/4"-20 Stainless Steel Cap Screw, 3/8" LongThorlabsSH25S038
1000 µm, 0.50 NA, SMA-SMA Fiber Patch CableThorlabsM59L01
12.7 mm Optical PostThorlabsTR30/M
12.7 mm Pedestal Post HolderThorlabsPH20EM
15 V, 2.4 A Power Supply Unit with 3.5 mm Jack Connector for T-CubeThorlabsKPS101
20x objectiveThorlabsRMS20X#10 in Figure 2, #11 in Figure 5
30 mm Cage Cube with Dichroic Filter MountThorlabsCM1-DCH/M#8-9 in Figure 2, #8-10 in Figure 5
405 nm LEDDoric LensesCLED_405#2 in Figure 2
410 nm bandpass filterThorlabsFB410-10#5 in Figure 2; #7 in Figure 5
465 nm. LEDDoric LensesCLED_465#1 in Figure 2
470 nm bandpass filterThorlabsFB470-10#4 in Figure 2; #6 in Figure 5
560 nm bandpass filterSemrockFF01-560/14-25#5 in Figure 5
560 nm LEDDoric LensesCLED_560#1 in Figure 3
5-axis kinematic MountThorlabsK5X1#11 in Figure 2, #12 in Figure 5
Achromatic DoubletThorlabsAC254-035-A-ML#7 in Figure 2
Adaptor for 405 collimatorThorlabsAD11F#3 in Figure 2; #4 in Figure 5
Adaptor for ajustable collimatorThorlabsAD127-F#3 in Figure 2; #4 in Figure 5
Aluminum BreadboardThorlabsMB1824
Clamping ForkThorlabsCF125
Cube connectorThorlabsCM1-CC
Dual 493/574 dichroicSemrockFF493/574-Di01-25x36#10 in Figure 5
Emission filter for GCaMP6SemrockFF01-535/22-25#6 in Figure 2
Enclosure with Black Hardboard PanelsThorlabsXE25C9
Externally SM1-Threaded End Cap for MachiningThorlabsSM1CP2M
Fast-change SM1 Lens Tube Filter HolderThorlabsSM1QP#4-6 in Figure 2, #5-7 in Figure 5
Fixed Collimator for 405 nm lightThorlabsF671SMA-405#3 in Figure 2; #4 in Figure 5
Fixed collimator for 470 and 560 nm lightThorlabsF240SMA-532#3 in Figure 2; #4 in Figure 5
Green emission filterSemrockFF01-520/35-25In light beam splitter
High-Resolution USB 3.0 CMOS CameraThorlabsDCC3260M#13 in Figure 2, #15 in Figure 5
Light beam splitterNeurophotometricsSPLIT#14 in Figure 5
Longpass Dichroic Mirror, 425 nm CutoffThorlabsDMLP425R#8 in Figure 2, #9 in Figure 5
Longpass Dichroic Mirror, 495 nm CutoffSemrockFF495-Di03#9 in Figure 2, #8 in Figure 5
Metabond dental cementC&B
M8 - M8 cableDoric LensesCable_M8-M8
Optic fiber cannulasDoric LensesNeed to specify that these will be used to photometry experiments requiring low autofluorescence
Optic fiber PatchcordsDoric LensesNeed to specify that these will be used to photometry experiments requiring low autofluorescence
Red emission filterSemrockFF01-600/37-25In light beam splitter
T7 LabJackLabJack
T-cube LED DriverThorlabsLEDD1B
USB 3.0 I/O Cable, Hirose 25, for DCC3240ThorlabsCAB-DCU-T3

References

  1. Gunaydin, L. A., et al. Natural Neural Projection Dynamics Underlying Social Behavior. Cell. 157 (7), 1535-1551 (2014).
  2. Proulx, C. D., et al. A neural pathway controlling motivation to exert effort. P....

Explore More Articles

Multi fiber PhotometryFiber PhotometryCSOM ImagingNeural ActivityFreely moving AnimalsGenetically Encoded Custom IndicatorOptical FibersFive axis TranslatorCMOS CameraRegions Of Interest ROIsFiber LabelingRecording Arena Setup

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved