A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This article demonstrates the use of laser Doppler flowmetry to evaluate the ability of the cerebral circulation to autoregulate its blood flow during reductions in arterial blood pressure.
When investigating the body's mechanisms for regulating cerebral blood flow, a relative measurement of microcirculatory blood flow can be obtained using laser Doppler flowmetry (LDF). This paper demonstrates a closed skull preparation that allows cerebral blood flow to be assessed without penetrating the skull or installing a chamber or cerebral window. To evaluate autoregulatory mechanisms, a model of controlled blood pressure reduction via graded hemorrhage can be utilized while simultaneously employing LDF. This enables the real time tracking of the relative changes in the blood flow in response to reductions in arterial blood pressure produced by the withdrawal of circulating blood volume. This paradigm is a valuable approach to study cerebral blood flow autoregulation during reductions in arterial blood pressure and, with minor modifications in the protocol, is also valuable as an experimental model of hemorrhagic shock. In addition to evaluating autoregulatory responses, LDF can be used to monitor the cortical blood flow when investigating metabolic, myogenic, endothelial, humoral, or neural mechanisms that regulate cerebral blood flow and the impact of various experimental interventions and pathological conditions on cerebral blood flow.
Autoregulatory mechanisms in the cerebral circulation play a crucial role in maintaining homeostasis and normal function in the brain. Autoregulation of the cerebral blood flow is affected by multiple factors including heart rate, blood velocity, perfusion pressure, the diameter of the cerebral resistance arteries, and the microcirculatory resistance, all of which play a role in maintaining the total cerebral blood flow constant in the brain over the physiological range of systemic blood pressures. When arterial pressure increases, these mechanisms constrict arterioles and resistance arteries to prevent dangerous increases in intracranial pressure. When arterial blood pressure decreases, local control mechanisms dilate the arterioles to maintain tissue perfusion and O2 delivery. Various pathological conditions such as hypercapnia, traumatic or global hypoxic brain injury, and diabetic microangiopathy1,2,3,4,5,6 may disrupt the brain's ability to autoregulate its blood flow. For example, chronic hypertension shifts the effective autoregulatory range toward higher pressures7,8,9, and a high salt (HS) diet not only interferes with normal endothelium-dependent dilation in the cerebral microcirculation10, but also impairs the ability of autoregulatory mechanisms in the cerebral circulation to dilate and maintain tissue perfusion when arterial pressure is reduced11. Cerebral autoregulation is also impaired in Dahl salt-sensitive rats when they are fed a HS diet12.
During reductions in arterial pressure, dilation of the cerebral resistance arteries and arterioles initially returns cerebral blood flow to control values despite the reduced perfusion pressure. As arterial pressure is reduced further, cerebral blood flow remains constant at the lower pressure (plateau phase of the autoregulatory response) until the vasculature can no longer dilate to maintain blood flow at the lower pressure. The lowest pressure at which an organ can maintain normal blood flow is termed the lower limit of autoregulation (LLA). At pressures below the LLA, cerebral blood flow decreases significantly from resting values and decreases in a linear fashion with each reduction in arterial perfusion pressure13,14. An upward shift in the LLA, as observed in hypertension7,8,9, may increase the risk and severity of ischemic injury during conditions where the arterial perfusion pressure is reduced (e.g., myocardial infarction, ischemic stroke, or circulatory shock).
LDF has proven to be an extremely valuable approach to evaluate the blood flow in the microcirculation under a variety of circumstances, including autoregulation of the blood flow in the cerebral circulation11,14,15. In addition to evaluating autoregulatory responses, LDF can be used to monitor the cortical blood flow when investigating metabolic, myogenic, endothelial, humoral, or neural mechanisms that regulate the cerebral blood flow and the impact of various experimental interventions and pathological conditions on cerebral blood flow10,16,17,18,19,20,21.
LDF measures the shift in reflected laser light in response to the number and velocity of moving particles--in this case, red blood cells (RBC). For studies of cerebral vascular autoregulation, arterial blood pressure is changed either by the infusion of an alpha-adrenergic agonist to increase arterial pressure (because the cerebral circulation itself is insensitive to alpha-adrenergic vasoconstrictor agonists)12,15 or via controlled blood volume withdrawal to reduce arterial pressure11,14. In the present study, LDF is utilized to demonstrate the effects of graded reductions in blood pressure on cerebral autoregulation in a healthy rat. Although open and closed skull methods have been described in the literature22,23,24,25, the present paper demonstrates a closed skull preparation, allowing cerebral blood flow to be assessed without penetrating the skull or installing a chamber or cerebral window.
The Medical College of Wisconsin Institutional Animal Care and Use Committee (IACUC) approved all protocols described in this paper and all procedures are in compliance with the National Institutes of Health (NIH) Office of Laboratory Animal Welfare (OLAW) regulations.
1. Experimental animals and preparation for recording
2. Surgical preparation
3. Skull thinning for LDF measurements
4. Assessing cerebral vascular autoregulation
5. Statistical analysis
Figure 2 summarizes the results of experiments conducted in 10 male Sprague-Dawley rats fed standard laboratory chow. In those experiments, mean LCBF was maintained within 20% of the prehemorrhage value following the first three blood volume withdrawals, until the mean arterial pressure reached the LLA. Subsequent blood volume withdrawals at pressures below the LLA caused a progressive reduction of LCBF, showing that the cerebral circulation was no longer able to produce a sufficient level o...
Evaluation of Tissue Blood Flow Responses with Laser Doppler Flowmetry (LDF). As noted above, the LDF signal is proportional to the number and velocity of moving particles, in this case RBC, in the microcirculation. LDF readings in different organs are well correlated with whole organ blood flow assessed by established methods such as electromagnetic flow meters and radioactive microspheres30 and are generally consistent with studies evaluating the regulation of active tone in can...
The authors have nothing to disclose.
The authors express their sincere thanks to Kaleigh Kozak, Megan Stumpf, and Jack Bullis for their outstanding assistance in completing this study and preparing the manuscript. Grant Support: NIH #R01-HL128242, #R21-OD018309, and #R21-OD024781.
Name | Company | Catalog Number | Comments |
3-0 braided black silk suture | Midwest Vet | 193.73000.2 | |
Arterial Pressure Transducer | Merit Medical | 041516504A | |
Automated Data Acquisition Systems (WINDAQ & BIOPAC system) | DATAQ Instruments | ||
Blood Pressure Display Unit | Stoelting | 50115 | |
Circulating warm water pump | Gaymar Industries | T-pump | |
End-tidal CO2 monitor | Stoelting | Capstar-100 | |
Heparin Sodium | Midwest Vet | 191.46720.3 | |
Kimwipe | Fisher Scientific | 06-666A | |
Laser Doppler Flow Meter | Perimed | PeriFlux 5000 LDPM | |
Laser Doppler Refill Motility Standard | Perimed | PF1001 | |
Polyethylene Tubing (PE240) (for trachea cannula) | VWR | 63018-828 | |
Polyethylene Tubing (PE50) (for femoral catheters) | VWR | 63019-048 | |
Rodent Ventilator | Cwe/Stoelting | SAR-830/P | |
Saline | Midwest Vet | 193.74504.3 | |
Sprague-Dawley Outbred Rats | Variable | N/A | Rats were ordered from various companies |
Standard Rat Chow | Dyets, Inc. | 113755 | |
Stereotaxic Instrument | Cwe/Stoelting | Clasic Lab Standard |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved