A subscription to JoVE is required to view this content. Sign in or start your free trial.
The presented protocol describes a method for a neurite outgrowth assay and neurotoxicity assessment of small molecule compounds.
Neurite outgrowth assay and neurotoxicity assessment are two major studies that can be performed using the presented method herein. This protocol provides reliable analysis of neuronal morphology together with quantitative measurements of modifications on neurite length and synaptic protein localization and abundance upon treatment with small molecule compounds. In addition to the application of the presented method in neurite outgrowth studies, neurotoxicity assessment can be performed to assess, distinguish and rank commercial chemical compounds based on their potential developmental neurotoxicity effect.
Even though cell lines are nowadays widely used in compound screening assays in neuroscience, they often differ genetically and phenotypically from their tissue origin. Primary cells, on the other hand, maintain important markers and functions observed in vivo. Therefore, due to the translation potential and physiological relevance that these cells could offer neurite outgrowth assay and neurotoxicity assessment can considerably benefit from using human neural progenitor cells (hNPCs) as the primary human cell model.
The presented method herein can be utilized to screen for the ability of compounds to induce neurite outgrowth and neurotoxicity by taking advantage of the human neural progenitor cell-derived neurons, a cell model closely representing human biology."
Neurite growth is a process fundamental to the formation of the neuronal network and nerve regeneration1,2. Following an injury, neurite outgrowth plays a key role in regeneration of the nervous system. Neurite outgrowth is also an important element of the extracellular signaling in inducing neuronal regenerative activities to enhance the outcomes for neurodegenerative disorders and neuronal injury3,4,5,6.
By maintaining their differentiation potential in ....
Ethics Statement: Fetal specimens were received from the Birth Defects Research Laboratory at the University of Washington in Seattle through a tissue distribution program supported by the National Institute of Health (NIH). The Birth Defects Research Laboratory obtained appropriate written informed consent from the parents and the procurement of tissues was monitored by the Institutional Review Board of the University of Washington. All the work was performed with approval by the Human Subject Research Office at the Uni.......
The protocol presented in the manuscript has successfully been used in two recently published papers22,23. Figure 3 demonstrates the use of hNPCs-derived neurons in examining the effect of HDAC inhibitors as epigenetic compounds on the extension of neurites as a marker for neurite outgrowth and subsequent neurogenic ability of small molecule compounds.
Furthermore, in Figure 4.......
This protocol is one of the few published papers describing the test for neurite length upon treatment with test compounds. Furthermore, we describe how to use hNPCs for a neurite outgrowth assay and neurotoxicity assessment. By utilizing this neurite outgrowth assay and neurotoxicity assessment on hNPCs-derived neurons, the neurogenic potential of a category of epigenetic small-molecule compounds, HDAC inhibitors, in inducing neurite outgrowth is demonstrated22. Furthermore, in another paper pres.......
This research was funded by NIMAD research grant (940714) awarded to MAF.
....Name | Company | Catalog Number | Comments |
4-well Glass Chamber Slides | Sigma | PEZGS0816 | |
Alexa Fluor 488 | Invitrogen | A-11001 | |
Alexa Fluor 594 | Invitrogen | R37117 | |
Antibiotic-Antimycotic | Gibco | 15240062 | |
Anti-β-Tubulin III | Thermo | MA1-118X | |
B27 | Thermo | 17504001 | |
B27 - minus vitamin A | Thermo | 12587010 | |
BDNF | PeproTech | 450-02 | |
BSA | Sigma | A8531 | |
CellTiter-Glo | Promega | G7572 | |
CoolCell | Corning | 432000 | Cell freezing containers ensuring standardized controlled-rate -1℃/minute cell freezing in a -80℃ freezer |
CryoStor CS10 | StemCell Technologies | 7930 | Cryopreservation medium containing 10% DMSO |
DAPI | Thermo | D1306 | |
DMEM/F12 | Gibco | 11320033 | |
DMSO | Sigma | 34869-100ML | |
EGF | Gibco | PHG0311 | |
FGF | Gibco | PHG6015 | |
Formaldehyde | Thermo | FB002 | |
GDNF | PeproTech | 450-10 | |
Glutamax | Gibco | 35050061 | L-alanyl-L-glutamine supplement |
Goat Serum | Thermo | 50062Z | |
Heparin | Calbiochem | 375095 | |
Laminin | Sigma | L2020-1MG | |
L-Ascorbic Acid | Sigma | A92902-25G | |
L-lysine | Sigma | L5501 | |
MEM non-essential amino acids | Gibco | 11140050 | |
mFreSR | StemCell Technologies | 5854 | Serum-free cryopreservation medium designed for the cryopreservation of human embryonic and induced pluripotent stem cells |
N2 | Gibco | 17502048 | |
NaCl | Sigma | 71376 | |
Neurobasal Medium | Gibco | 21103049 | |
Nunc 384-Well Polystyrene White Microplates | Thermo | 164610 | |
PBS | Thermo | 10010-049 | |
Poly‐L‐lysine | Sigma | P5899-5MG | |
ProLong Gold Antifade Mountant | Thermo | P10144 | |
Retinoic Acid | Sigma | R2625 | |
Sodium Azide | Sigma | S2002 | |
StemPro Accutase | Gibco | A1110501 | Cell dissociation reagent containing proteolytic and collagenolytic enzymes |
Synaptophysin | Thermo | MA5-14532 | |
Tris Base | Sigma | 10708976001 | |
Triton X-100 | Sigma | X100-100ML |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved