Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Presented here is a chemically defined protocol for the derivation of human kidney podocytes from induced pluripotent stem cells with high efficiency (>90%) and independent of genetic manipulations or subpopulation selection. This protocol produces the desired cell type within 26 days and could be useful for nephrotoxicity testing and disease modeling.

Abstract

Kidney disease affects more than 10% of the global population and costs billions of dollars in federal expenditures. The most severe forms of kidney disease and eventual end-stage renal failure are often caused by the damage to the glomerular podocytes, which are the highly specialized epithelial cells that function together with endothelial cells and the glomerular basement membrane to form the kidney’s filtration barrier. Advances in renal medicine have been hindered by the limited availability of primary tissues and the lack of robust methods for the derivation of functional human kidney cells, such as podocytes. The ability to derive podocytes from renewable sources, such as stem cells, could help advance current understanding of the mechanisms of human kidney development and disease, as well as provide new tools for therapeutic discovery. The goal of this protocol was to develop a method to derive mature, post-mitotic podocytes from human induced pluripotent stem (hiPS) cells with high efficiency and specificity, and under chemically defined conditions. The hiPS cell-derived podocytes produced by this method express lineage-specific markers (including nephrin, podocin, and Wilm’s Tumor 1) and exhibit the specialized morphological characteristics (including primary and secondary foot processes) associated with mature and functional podocytes. Intriguingly, these specialized features are notably absent in the immortalized podocyte cell line widely used in the field, which suggests that the protocol described herein produces human kidney podocytes that have a developmentally more mature phenotype than the existing podocyte cell lines typically used to study human kidney biology.

Introduction

Advances in human pluripotent stem cell culture are poised to revolutionize regenerative medicine, disease modeling, and drug screening by providing researchers with a renewable, scalable source of biological material that can be engineered to obtain almost any cell type within the human body1. This strategy is especially useful for deriving specialized and functional cell types that would otherwise be difficult to obtain. Human induced pluripotent stem (hiPS) cells2,3,4,5 are particularly attractive due to their soma....

Protocol

1. Preparation of reagents

  1. Dilute thawed 5x hiPS cell culture media (CCM) supplement in hiPS cell culture basal medium to obtain a 1x solution of hiPS CCM.
    NOTE: Frozen 5x hiPS CCM supplement requires a slow thawing process, ideally in 4 ˚C for overnight. Aliquots of the 1x hiPS CCM can be stored for up to 6 months at -20 ˚C.
  2. Preparation of basement membrane (BM) matrix 1-coated plates for hiPS cell culture: Thaw BM matrix 1 overnight on ice at 4 ˚C. Once thawed, prepare aliquo.......

Representative Results

The goal of this protocol was to demonstrate that mature human podocytes can be derived from hiPS cells under chemically defined conditions. The data presented in this manuscript were generated by using the DU11 hiPS cell line17, which were first tested for, and found to be free of mycoplasma. Chromosomal analysis was also performed, and the cells were found to be karyotypically normal. Starting with the undifferentiated DU11 hiPS cells, the differentiation strategy (Figure 1<.......

Discussion

In this report, we describe a protocol for the generation of kidney glomerular podocytes from hiPS cells. The hiPS cell-derived podocytes exhibit morphological and molecular features associated with the mature kidney podocyte phenotype13. In previous publications, we showed that the hiPS cell-derived podocytes can mimic the structure and selective filtration function of the kidney glomerulus when co-cultured with glomerular microvascular endothelial cells in a perfusable microfluidic organ-on-a-ch.......

Acknowledgements

This work was supported by the Pratt school of Engineering at Duke University, the Division of Nephrology at Duke Medical School, A Chair’s Research Award from the Department of Medicine at Duke University, and a Burroughs Wellcome Fund PDEP Career Transition Ad Hoc Award to S.M.. M.B was supported by the National Science Foundation’s Graduate Research Fellowship Program. We thank the Bursac Lab for generously providing us with the DU11 stem cell line, and the Varghese Lab at Duke University for temporarily sharing their tissue culture facility with our group. This publication is dedicated to Prof. Laura L. Kiessling, Novartis Professor of Chemist....

Materials

NameCompanyCatalog NumberComments
Cells
DU11 human iPS cellsThe DU11(Duke University clone #11) iPS cell line was generated at the Duke University iPSC Core Facility and provided to us by the Bursac Lab at Duke University. This line has been tested for mycoplasma and was last karyotyped in July 2019 by our lab, and found to be karyotypically normal.
Growth Factors and Media Supplements
All-trans retinoic acid (500 mg)72262Stem Cell Technologies
B27 serum-free supplement17504044Thermo/Life Technologies
CHIR9902104-0004StemgentMay show lot-to-lot variation
Complete Medium Kit with CultureBoost-R4Z0-500-RCell SystemsPodocyte maintenance media
DMEM/F1212634028Thermo/Life Technologies
DMEM/F12 with GlutaMAX supplement10565042Thermo/Life TechnologiesDMEM/F12 with glutamine supplement
Heat-inactivated FBS10082147Thermo/Life Technologies
Human activin APHC9564Thermo/Life Technologies
Human BMP7PHC9544Thermo/Life Technologies
Human VEGFPHC9394Thermo/Life Technologies
mTeSR1 medium05850Stem Cell TechnologieshiPS cell culture media (CCM)
Penicillin–streptomycin, liquid (100×)15140-163Thermo/Life Technologies
Y27632 ROCK inhibitor1254Tocris
Antibodies
Alexa Fluor 488– and Alexa Fluor 594–conjugated secondary antibodiesA32744; A32754; A-11076; A32790Thermo/Life Technologies
Brachyury(T)ab20680Abcam
NephrinGP-N2Progen
OCT4AF1759R&D Systems
PAX271-6000Invitrogen
WT1MAB4234Millipore
ECM Molecules
iMatrix-511 Laminin-E8 (LM-E8) fragmentN-892012Iwai North AmericaBasement membrane (BM) matrix 2
Matrigel hESC-qualified matrix, 5-mL vial354277BD BiosciencesBasement membrane (BM) matrix 1. May show lot-to-lot variation
Enzymes and Other Reagents
AccutaseA1110501Thermo/Life TechnologiesCell detachment solution
BSAA9418Sigma-Aldrich
Dimethyl Sulfoxide (DMSO)D2438Sigma-AldrichDMSO is toxic. Should be handled in chemical safety hood
Enzyme-free cell dissociation buffer, Hank’s balanced salt13150016Thermo/Life Technologies
Ethanol solution, 70% (vol/vol), biotechnology grade97065-058VWREthanol is flammable and toxic
FBS431097Corning
Paraformaldehyde (PFA)28906Thermo/Life TechnologiesPFA should be handled in a chemical fume hood with proper personal protection equipment, including gloves, lab coat, and safety eye glasses. Avoid inhalation and contact with skin.
Phosphate-buffered saline (PBS)14190-250Thermo/Life Technologies
Sterile Distilled Water15230162Thermo/Life Technologies
Triton X-10097062-208VWR
Trypsin-EDTA, 0.05%25300-120Thermo/Life Technologies
Equipment
Aspirating pipettes, individually wrapped29442-462Corning
Avanti J-15R CentrifugeB99516Beckman Coulter
Conical centrifuge tube, 15 mL352097Corning
Conical centrifuge tube, 50 mL352098Corning
Cryoboxes3395465Thermo/Life TechnologiesFor storing frozen aliquots
EVOS M7000AMF7000Thermo/Life TechnologiesFlourescent microscope used to acquire images of fixed and stained iPS cells and their derivatives
Hemocytometer100503-092VWR
Heracell VIOS 160i CO2 incubator51030403Thermo/Life TechnologiesFor the routine culture and maintenace of iPS cells and their derivatives
Inverted Zeiss Axio Observer equipped with AxioCam 503 camera491916-0001-000(microscope) ; 426558-0000-000(camera)Carl Zeiss MicroscopyUsed to acquire phase contrast images of live iPS cells and their derivatives at each stage of podocyte differentiation
Kimberly-Clark nitrile gloves40101-346VWR
Kimwipes, large21905-049VWR
Kimwipes, small21905-026VWR
P10 precision barrier pipette tipsP1096-FRDenville Scientific
P100 barrier pipette tipsP1125Denville Scientific
P1000 barrier pipette tipsP1126Denville Scientific
P20 barrier pipette tipsP1121Denville Scientific
P200 barrier pipette tipsP1122Denville Scientific
Serological pipette, 10 mL, individually wrapped356551Corning
Serological pipette, 25 mL, individually wrapped356525Corning
Serological pipette, 5 mL, individually wrapped356543Corning
Steriflip, 0.22 μm, PESSCGP00525EMD Millipore
Sterile Microcentrifuge Tubes1138W14Thomas ScientificFor aliquoting growth factors
Tissue culture–treated 12-well plates353043Corning
Tissue culture–treated six-well plates353046Corning
VWR white techuni lab coat10141-342VWR
Wide-beveled cell lifter3008Corning

References

  1. Liu, G., David, B. T., Trawczynski, M., Fessler, R. G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports. 16, 3-32 (2020).
  2. Tabar, V., Studer, L.

Explore More Articles

Human Induced Pluripotent Stem CellsKidney PodocytesChemically Defined ConditionsFeeder free CultureCell DifferentiationBasement Membrane MatrixDissociationCell CultureKidney Disease Modeling

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved