A subscription to JoVE is required to view this content. Sign in or start your free trial.
High resolution melting analysis (HRM) is a sensitive and rapid solution for genetic variant detection. It depends on sequence differences that result in heteroduplexes changing the shape of the melting curve. By combing HRM and agarose gel electrophoresis, different types of genetic variants such as indels can be identified.
High resolution melting analysis (HRM) is a powerful method for genotyping and genetic variation scanning. Most HRM applications depend on saturating DNA dyes that detect sequence differences, and heteroduplexes that change the shape of the melting curve. Excellent instrument resolution and special data analysis software are needed to identify the small melting curve differences that identify a variant or genotype. Different types of genetic variants with diverse frequencies can be observed in the gene specific for patients with a specific disease, especially cancer and in the CALR gene in patients with Philadelphia chromosome–negative myeloproliferative neoplasms. Single nucleotide changes, insertions and/or deletions (indels) in the gene of interest can be detected by the HRM analysis. The identification of different types of genetic variants is mostly based on the controls used in the qPCR HRM assay. However, as the product length increases, the difference between wild-type and heterozygote curves becomes smaller, and the type of genetic variant is more difficult to determine. Therefore, where indels are the prevalent genetic variant expected in the gene of interest, an additional method such as agarose gel electrophoresis can be used for the clarification of the HRM result. In some instances, an inconclusive result must be re-checked/re-diagnosed by standard Sanger sequencing. In this retrospective study, we applied the method to JAK2 V617F-negative patients with MPN.
Somatic genetic variants in the calreticulin gene (CALR) were recognized in 2013 in patients with myeloproliferative neoplasms (MPN) such as essential thrombocythemia and primary myelofibrosis1,2. Since then, more than 50 genetic variants in the CALR gene have been discovered, inducing a +1 (−1+2) frameshift3. The two most frequent CALR genetic variants are a 52 bp deletion (NM_004343.3 (CALR):c.1099_1150del52, p.(Leu367Thrfs*46)), also called type 1 mutation, and a 5 bp insertion (NM_004343.3 (CALR):c.1154_1155insTTGTC, p.(Lys385Asnfs*47)), also called type 2 mutation. These two genetic variants represent 80% of all CALR genetic variants. The other ones have been classified as type 1–like or type 2–like using algorithms based on the preservation of an α helix close to wild type CALR4. Here, we present one of the highly sensitive and rapid methods for CALR genetic variant detection, the high resolution melting analysis method (HRM). This method enables the rapid detection of type 1 and type 2 genetic variants, which represent the majority of CALR mutations5. HRM was introduced in combination with real time »polymerase chain reaction« (qPCR) in 1997 as a tool to detect the mutation in factor V Leiden6. In comparison to Sanger sequencing that represents the golden standard technique, HRM is a more sensitive and less specific method5. The HRM method is a good screening method that enables a rapid analysis of a large number of samples with a great cost-benefit5. It is a simple PCR method performed in the presence of a fluorescent dye and does not require specific skills. Another benefit is that the procedure itself does not damage or destroy the analyzed sample that allows us to reuse the sample for electrophoresis or Sanger sequencing after the HRM procedure7. The only disadvantage is that it is sometimes difficult to interpret the results. Additionally, HRM does not detect the exact mutation in patients with non-type 1 or type 2 mutations8. In these patients, Sanger sequencing should be performed (Figure 1).
HRM is based on the amplification of the specific DNA region in the presence of saturating DNA fluorescent dye, which is incorporated in double-stranded DNA (dsDNA). The fluorescent dye emits light when incorporated in the dsDNA. After a progressive increase in temperature, dsDNA breaks down into single stranded DNA, which can be detected on the melting curve as a sudden decrease in fluorescence intensity. The shape of the melting curve depends on the DNA sequence that is used to detect the mutation. Melting curves of samples are compared to melting curves of known mutations or wild type CALR. Distinct melting curves represent a different mutation that is non type 1 or type 29.
The algorithm for the somatic genetic variant detection in the CALR gene by HRM, agarose gel electrophoresis and sequencing method (Figure 1) was used and validated in the retrospective study published before10.
The study was approved by the Committee of Medical Ethics of the Republic of Slovenia. All procedures were in accordance with the Helsinki declaration.
1. Fluorescence-based quantitative real-time PCR (qPCR) and post-qPCR analysis by HRM
2. Agarose gel electrophoresis
The successfully amplified DNA region of interest with an exponential increase in fluorescence that exceeds the threshold between cycles 15 and 35 and very narrow values of the cycle of quantification (Cq) in all replicated samples and controls (Figure 2) is a prerequisite for the reliable identification of genetic variants by HRM analysis. This is achieved by using a precise determination of DNA with fluorescence staining and an equal amount of DNA in the qPCR HRM experiment (see step 1.2)....
High-resolution melting of DNA is a simple solution for genotyping and genetic variant scanning14. It depends on sequence differences that result in heteroduplexes that change the shape of the melting curve. Different types of genetic variants with diverse frequencies can be observed in the gene specific for a certain group of patients with cancer1,2,15,16,
The authors have no conflicts of interest to disclose.
The authors would like to thank all the academic experts and employees at the Specialized Hematology Laboratory, Department of Hematology, Division of Internal Medicine, University Medical Centre Ljubljana.
Name | Company | Catalog Number | Comments |
E-Gel EX 4% Agarose | Invitrogen, Thermo Fischer Scientific | G401004 | |
Fuorometer 3.0 QUBIT | Invitrogen, Thermo Fischer Scientific | Q33216 | |
Invitrogen E-Gel iBase and E-Gel Safe Imager Combo Kit | Invitrogen, Thermo Fischer Scientific | G6465EU | |
MeltDoctor HRM MasterMix 2X | Applied Biosystem, Thermo Fischer Scientific | 4415440 | Components: AmpliTaqGold 360 DNA Polymerase, MeltDoctor trade HRM dye, dNTP blend including dUTP, Magnesium salts and other buffer components, precisely formulated to obtain optimal HRM results |
MicroAmp Fast 96-well Reaction Plate (0.1 mL) | Applied Biosystems, Thermo Fischer Scientific | 4346907 | |
MicroAmp Optical adhesive film | Applied Biosystems, Thermo Fischer Scientific | 4311971 | |
NuGenius | Syngene | NG-1045 | Gel documentation systems |
Primer CALRex9 Forward | Eurofins Genomics | Sequence: 5'GGCAAGGCCCTGAGGTGT'3 (High-Purity, Salt-Free) | |
Primer CALRex9 Reverse | Eurofins Genomics | Sequence: 5'GGCCTCAGTCCAGCCCTG'3 (High-Purity, Salt-Free) | |
QIAamp DNA Mini Kit | QIAGEN | 51306 | DNA isolation kit with the buffer for DNA dilution. |
Qubit Assay Tubes | Invitrogen, Thermo Fischer Scientific | Q32856 | |
QUBIT dsDNA HS assay | Invitrogen, Thermo Fischer Scientific | Q32854 | |
Trackit 100bp DNA Ladder | Invitrogen, Thermo Fischer Scientific | 10488058 | Ladder consists of 13 individual fragments with the reference bands at 2000, 1500, and 600 bp. |
ViiA7 Real-Time PCR System | Applied Biosystems, Thermo Fischer Scientific | 4453534 | |
Water nuclease free | VWR, Life Science | 436912C | RNase, DNase and Protease free water |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved