A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the preparation of horizontal hippocampal-entorhinal cortex (HEC) slices from mice exhibiting spontaneous sharp-wave ripple activity. Slices are incubated in a simplified interface holding chamber and recordings are performed under submerged conditions with fast-flowing artificial cerebrospinal fluid to promote tissue oxygenation and the spontaneous emergence of network-level activity.

Abstract

Acute rodent brain slicing offers a tractable experimental approach to gain insight into the organization and function of neural circuits with single-cell resolution using electrophysiology, microscopy, and pharmacology. However, a major consideration in the design of in vitro experiments is the extent to which different slice preparations recapitulate naturalistic patterns of neural activity as observed in vivo. In the intact brain, the hippocampal network generates highly synchronized population activity reflective of the behavioral state of the animal, as exemplified by the sharp-wave ripple complexes (SWRs) that occur during waking consummatory states or non-REM sleep. SWRs and other forms of network activity can emerge spontaneously in isolated hippocampal slices under appropriate conditions. In order to apply the powerful brain slice toolkit to the investigation of hippocampal network activity, it is necessary to utilize an approach that optimizes tissue health and the preservation of functional connectivity within the hippocampal network. Mice are transcardially perfused with cold sucrose-based artificial cerebrospinal fluid. Horizontal slices containing the hippocampus are cut at a thickness of 450 μm to preserve synaptic connectivity. Slices recover in an interface-style chamber and are transferred to a submerged chamber for recordings. The recording chamber is designed for dual surface superfusion of artificial cerebrospinal fluid at a high flow rate to improve oxygenation of the slice. This protocol yields healthy tissue suitable for the investigation of complex and spontaneous network activity in vitro.

Introduction

Electrophysiological measurement from living hippocampal slices in vitro is a powerful experimental approach with numerous advantages. The experimenter can use a microscope, micromanipulators, and a recording system to directly visualize and collect measurements from individual neurons in the tissue. Tissue slices are also very accessible to photostimulation or drug delivery for optogenetic, chemogenetic, or pharmacological experiments.

The hippocampal network generates highly synchronous population activity in vivo, visible as oscillations in the extracellular local field potential1,

Protocol

All methods described here have been approved by the Institutional Animal Care and Use Committee at Columbia University (AC-AAAU9451).

1. Prepare solutions

  1. Prepare sucrose cutting solution for slicing as described in Table 1.
    NOTE: After preparing 1 L of sucrose solution, freeze a small amount (approximately 100–200 mL) in an ice tray. These frozen sucrose ice cubes will be blended into an icy slurry (see step 4.3).
  2. Prepare artificial cerebrospinal fluid (ACSF) for recording as described in Table 2.
  3. Prepare 1 M of NaCl for stimulation pipettes by....

Results

Presented here are representative recordings from HEC slices prepared as described in this protocol. Following recovery in an interface holding chamber (Figure 1C), slices are transferred individually to a submerged recording chamber (Figure 2B). The recording chamber is supplied with carbogen-saturated ACSF using a peristaltic pump (Figure 2A). The pump first draws ACSF from a holding beaker into a heated reservoir. Carbogen lines .......

Discussion

There are several steps in this slicing protocol designed to promote tissue health and favor the emergence of spontaneous naturalistic network activity: the mouse is transcardially perfused with chilled sucrose cutting solution; horizontal-entorhinal cortex (HEC) slices are cut at a thickness of 450 μm from the intermediate or ventral hippocampus; slices recover at the interface of warmed ACSF and humidified, carbogen-rich air; during recordings slices are superfused with ACSF warmed to 32 °C and delivered at a.......

Disclosures

The author has nothing to disclose.

Acknowledgements

The author would like to thank Steve Siegelbaum for support. Funding is provided by 5R01NS106983-02 as well as 1 F31 NS113466-01.

....

Materials

NameCompanyCatalog NumberComments
3D printerLulzbotLulzBot TAZ 6
Acute brain slice incubation holderNIH 3D Print Exchange3DPX-001623Designed by ChiaMing Lee, available at https://3dprint.nih.gov/discover/3dpx-001623
Adenosine 5′-triphosphate magnesium saltSigma AldrichA9187-500MG
Ag-Cl ground pelletsWarner64-1309, (E205)
agarBecton, Dickinson214530-500g
ascorbic acidAlfa Aesar36237
beaker (250 mL)Kimax14000-250
beaker (400 mL)Kimax14000-400
biocytinSigma AldrichB4261
blenderOsterBRLY07-B00-NP0
Bonn scissors, smallbecton, Dickinson14184-09
borosilicate glass capillaries with filament (O.D. 1.5 mm, I.D. 0.86 mm, length 10 cm)Sutter InstrumentsBF150-86-10HPFire polished capillaries are preferable.
calcium chloride solution (1 M)G-BiosciencesR040
cameraOlympusOLY-150
compressed carbogen gas (95% oxygen / 5% carbon dioxide)AirgasX02OX95C2003102
compressed oxygenAirgasOX 200
constant voltage isolated stimulatorDigitimer Ltd.DS2A-Mk.II
coverslips (22x50 mm)VWR16004-314
cyanoacrylate adhesiveKrazy GlueKG925Ideally use the brush-on form for precision
data acquisition softwareAxographN/AAny equivalent software (e.g. pClamp) would work.
Dell Precision T1500 Tower Workstation DesktopDellN/ACatalog number will depend on specific computer - any computer will work as long as it can run electrophysiology acquisition software.
Digidata 1440AMolecular Devices1-2950-0367
digital timerVWR62344-6414-channel Traceable timer
disposable absorbant padsVWR56616-018
dissector scissorsFine Science Tools14082-09
double-edge razor bladesPersonnaBP9020
dual automatic temperature controllerWarner Instrument CorporationTC-344B
dual-surface or laminar-flow optimized recording chamberN/AN/AThe chamber presented in this protocol is custom made. A commercial equivalent would be the RC-27L from Warner Instruments.
equipment rackAutomate ScientificFR-EQ70"A rack is not strictly necessary but useful for organizing electrophysiology
Ethylene glycol-bis(2-aminoethyiether)- N,N,N',N'-teetraacetic acid (EGTA)Sigma Aldrich324626-25GM
filter paperWhatman1004 070
fine scaleMettler ToledoXS204DR
Flaming/Brown micropipette pullerSutter InstrumentsP-97
glass petri dish (100 x 15 mm)Corning3160-101
glucoseFisher ScientificD16-1
Guanosine 5′-triphosphate sodium salt hydrateSigma AldrichG8877-250MG
ice bucketsSigma AldrichBAM168072002-1EA
isoflurane vaporizerGeneral Anesthetic ServicesTec 3
lab tapeFisher Scientific15-901-10R
lens paperFisher Scientific11-996
light sourceOlympusTH4-100
magnesium chloride solution (1 M)Quality Biological351-033-721EA
magnetic stir barsFisher Scientific14-513-56Catalog number will be dependent on the size of the stir bar.
micromanipulatorLuigs & NeumannSM-5
micromanipulator (manual)ScientificaLBM-2000-00
microscopeOlympusBX51WI
microspatulaFine Science Tools10089-11
monitorDell2007FPb
MultiClamp 700B Microelectrode AmplifierMolecular DevicesMULTICLAMP 700BThe MultiClamp 700B should include headstages, pipette holders, and a model cell.
N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid), (HEPES)Sigma AldrichH3375-25G
needle (20 gauge, 1.5 in length)Becton, Dickinson305176
nylon filamentYLI Wonder Invisible Thread212-15-004size 0.004. This cat. # is from Amazon.com
nylon meshWarner Instruments Corporation64-0198
perstaltic pumpHarvard Apparatus70-2027
Phosphocreatine di(tris) saltSigma AldrichP1937-1G
pipette holdersMolecular Devices1-HL-U
platinum wireWorld PrecisionPT0203
polylactic acid (PLA) filamentUltimakerRAL 9010
potassium chlorideSigma AldrichP3911-500G
potassium gluconateSigma Aldrich1550001-200MG
potassium hydroxideSigma Aldrich60377-1KG
razor bladesVWR55411-050
roller clampWorld Precision Instruments14041
scaleMettler ToledoPM2000
scalpel handleFine Science Tools10004-13
slice harpWarnerSHD-26GH/2
sodium bicarbonateFisher ChemicalS233-500
sodium chlorideSigma AldrichS9888-1KG
sodium phosphate monobasic anhydrousFisher ChemicalS369-500
sodium pyruvateFisher ChemicalBP356-100
spatulaVWR82027-520
spatula/spoon, largeVWR470149-442
sterile scalpel bladesFeather72044-10
stirrer / hot plateCorning6795-220
stopcock valves, 1-wayWorld Precision Instruments14054
stopcock valves, 3-wayWorld Precision Instruments14036
sucroseAcros OrganicsAC177142500
support for swivel clampsFisher Scientific14-679Q
surgical scissors, sharp/bluntFine Science Tools14001-12
syringe (1 mL)Becton, Dickinson309659
syringe (60 mL with Luer-Lok tip)Becton, Dickinson309653
three-pronged clampFisher Scientific05-769-8Q
tissue forceps, largeFine Science Tools11021-15
tissue forceps, smallFine Science Tools11023-10
transfer pipettesFisher Scientific13-711-7M
tubingTygonE-3603ID 1/16 inch, OD 3/16 inch
tubingTygonR-3603ID 1/8 inch, OD 1/4 inch
vacuum greaseDow Corning14-635-5D
vibrating blade microtomeLeicaVT 1200S
vibration-dampening table with faraday cageMicro-G / TMC-ametek2536-516-4-30PE
volumetric flask (1 L)KimaxKIM-28014-1000
volumetric flask (2 L)PYREX65640-2000
warm water bathVWR1209
 

References

  1. Buzsáki, G., Lai-Wo, S., Vanderwolf, C. H. Cellular bases of hippocampal EEG in the behaving rat. Brain Research Reviews. 6, 139-171 (1983).
  2. Buzsáki, G. Hippocampal sharp waves: Their origin and significance.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Acute Mouse Brain SliceHippocampal Network OscillationsSpontaneous Network ActivityTranscardial PerfusionAnesthetized MouseTissue ForcepsSurgical ScissorsRib CagePerfusion NeedleRight AtriumSkullMicrospatulaOlfactory BulbsSucrose Solution

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved