A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a method for the preparation and live imaging of undiluted cytoplasmic extracts from Xenopus laevis eggs.
Traditionally used for bulk biochemical assays, Xenopus laevis egg extracts have emerged as a powerful imaging-based tool for studying cytoplasmic phenomena, such as cytokinesis, mitotic spindle formation and assembly of the nucleus. Building upon early methods that imaged fixed extracts sampled at sparse time points, recent approaches image live extracts using time-lapse microscopy, revealing more dynamical features with enhanced temporal resolution. These methods usually require sophisticated surface treatments of the imaging vessel. Here we introduce an alternative method for live imaging of egg extracts that require no chemical surface treatment. It is simple to implement and utilizes mass-produced laboratory consumables for imaging. We describe a system that can be used for both wide-field and confocal microscopy. It is designed for imaging extracts in a 2-dimensional (2D) field, but can be easily extended to imaging in 3D. It is well-suited for studying spatial pattern formation within the cytoplasm. With representative data, we demonstrate the typical dynamic organization of microtubules, nuclei and mitochondria in interphase extracts prepared using this method. These image data can provide quantitative information on cytoplasmic dynamics and spatial organization.
The cytoplasm constitutes the main volume of a cell and has a distinct organization. The ingredients of the eukaryotic cytoplasm can self-assemble into a wide range of spatial structures, such as microtubule asters and the Golgi apparatus, which in turn are dynamically arranged and turned over depending on the cell's identity and physiological state. Understanding the spatial organization of the cytoplasm and its link to cellular functions is thus important for understanding how the cell works. Xenopus laevis egg extracts have traditionally been used for bulk biochemical assays1,2,3,4,5,6,7,8, but recent work establishes them as a powerful live imaging system for mechanistic studies of cytoplasmic structures and their cellular functions9,10,11,12,13,14,15,16,17,18. These undiluted extracts preserve many structures and functions of the cytoplasm, while allowing direct manipulations of cytoplasmic contents not achievable in conventional cell-based models19,20. This makes them ideal for characterizing cytoplasmic phenomena and dissecting their mechanistic underpinnings.
Existing methods for imaging extracts require chemical surface modifications, or fabrication of microfluidic devices. One coverslip-based method requires polyethylene glycol (PEG) passivation of glass coverslips21. A microemulsion-based method requires vapor deposition of trichloro(1H,1H,2H,2H-perfluorooctyl)silane on glass surfaces22,23. Microfluidic-based systems allow precise control of the volume, geometry and composition of extract droplets, but require specialized microfabrication facilities11,12,24.
Here we introduce an alternative method for imaging egg extracts that is easy to implement and utilizes readily available, low-cost materials. This includes preparation of an imaging chamber with a slide and a coverslip coated with fluorinated ethylene propylene (FEP) tape. The chamber can be used for imaging extracts with a variety of microscopy systems, including stereoscopes and upright and inverted microscopes. This method requires no chemical treatment of surfaces while achieving similar optical clarity obtained with existing glass-based methods discussed above. It is designed to image a layer of extracts with a uniform thickness across a 2D field, and can be easily extended to image a 3D volume of extracts. It is well suited for time-lapse imaging of collective cytoplasmic behavior over a large field of view.
We have used interphase-arrested egg extracts to demonstrate our imaging method. The extract preparation follows the protocol of Deming and Kornbluth19. Briefly, eggs naturally arrested in metaphase of meiosis II are crushed by a low speed spin. This spin releases the cytoplasm from meiotic arrest and allows the extract to proceed into interphase. Normally, cytochalasin B is added prior to the crushing spin to inhibit F-actin formation. However, it can be omitted if F-actin is desired. Cycloheximide is also added prior to the crushing spin to prevent the interphase extract from entering the next mitosis. The extracts are subsequently placed in the aforementioned imaging chambers and placed on a microscope. Finally, images are recorded over time at defined intervals by a camera connected to the microscope, producing time-lapse image series that capture the dynamical behavior of the extract in a 2D field.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of Stanford University.
1. Preparation of slides and coverslips
2. Preparation and live imaging of interphase-arrested egg extracts
NOTE: The following protocol is adapted from Deming and Kornbluth19, Murray20, and Smythe and Newport25 with modifications. All steps should be performed at room temperature unless otherwise noted.
Xenopus laevis egg extracts can be used to study the self-organization of the cytoplasm during interphase. Figure 2A shows results from a successful experiment. We supplemented interphase-arrested extracts with demembranated Xenopus laevis sperm nuclei19 at a concentration of 27 nuclei/µL and 0.38 µM purified GST-GFP-NLS27,28,
Xenopus laevis egg extracts have emerged as a powerful model system for imaging-based studies of various subcellular structures10,14,15,16,17,18,21,31,32,33,
The authors have nothing to disclose.
We thank J. Kamenz, Y. Chen, and W. Y. C. Huang for comments on the manuscript. This work was supported by grants from the National Institutes of Health (R01 GM110564, P50 GM107615, and R35 GM131792) awarded to James E. Ferrell, Jr.
Name | Company | Catalog Number | Comments |
17 ml centrifuge tube | Beckman Coulter | 337986 | |
22x22 mm square #1 cover glass | Corning | 284522 | |
Aprotinin | MilliporeSigma | 10236624001 | Protease inhibitor |
Cycloheximide | MilliporeSigma | 01810 | Protein synthesis inhibitor |
Cytochalasin B | MilliporeSigma | C6762 | Actin polymerization inhibitor |
Female Xenopus laevis frogs | Nasco | LM00535MX | |
Fluorescent HiLyte 488 labeled tubulin protein | Cytoskeleton, Inc. | TL488M-A | For visualizing the microtubule cytoskeleton |
Fluorescent HiLyte 647 labeled tubulin protein | Cytoskeleton, Inc. | TL670M-A | For visualizing the microtubule cytoskeleton |
Fluorinated ethylene propylene (FEP) optically clear tape | CS Hyde company | 23-FEP-2-5 | |
Glass Pasteur pipette | Fisher Scientific | 13-678-20C | |
Human chorionic gonadotropin (hCG) | MilliporeSigma | CG10 | |
Imaging spacer | Electron Microscopy Sciences | 70327-8S | |
Leupeptin | MilliporeSigma | 11017101001 | Protease inhibitor |
Microscope slides | Fisher Scientific | 12-518-100B | |
Mineral oil | MilliporeSigma | 330760 | |
MitoTracker Red CMXRos | Thermo Fisher Scientific | M7512 | For visualizing mitochondria |
Pregnant mare serum gonadotropin (PMSG) | BioVendor | RP1782725000 | |
Roller applicator | Amazon | B07HMBJSP8 | For applying the FEP tape to the glass slides and coverslips |
Single-edged razor blades | Fisher Scientific | 12-640 | For removing excessive FEP tape |
Transfer pipette | Fisher Scientific | 13-711-7M |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved