A subscription to JoVE is required to view this content. Sign in or start your free trial.
We present a behavioral chamber designed to assess cognitive performance. We provide data showing that once acquired, zebrafish remember the task 8 weeks later. We also show that hyperglycemic zebrafish have altered cognitive performance, indicating that this paradigm is applicable to studies assessing cognition and memory.
Neurodegenerative diseases are age-dependent, debilitating, and incurable. Recent reports have also correlated hyperglycemia with changes in memory and/or cognitive impairment. We have modified and developed a three-chamber choice cognitive task similar to that used with rodents for use with hyperglycemic zebrafish. The testing chamber consists of a centrally located starting chamber and two choice compartments on either side, with a shoal of conspecifics used as the reward. We provide data showing that once acquired, zebrafish remember the task at least 8 weeks later. Our data indicate that zebrafish respond robustly to this reward, and we have identified cognitive deficits in hyperglycemic fish after 4 weeks of treatment. This behavioral assay may also be applicable to other studies related to cognition and memory.
Neurodegenerative diseases are age-dependent, debilitating, and incurable. These diseases are increasing in prevalence, resulting in an urgent need to improve upon and develop new therapeutic strategies. The onset and presentation of each disease is unique, as some affect language, motor, and autonomic brain regions, while others cause learning deficits and memory loss1. Most notably, cognitive deficits and/or impairment are the most prevalent complications across all neurodegenerative diseases2. In hopes of shedding light on the underlying mechanisms involved in these neurodegenerative diseases, the use of many different model systems (including single-celled organisms to Drosophila to higher-order vertebrates such as rodents and humans) have been employed; however, the majority of neurodegenerative diseases remain incurable.
Learning and memory are highly conserved processes among organisms as constant changes to the environment require adaptation3. Impairment in both cognition and synaptic plasticity has been demonstrated in several rodent models. Specifically, well-established behavioral assays use associative learning to assess cognitive changes following various impairment-induced diseases and disorders4. Additionally, contrast discrimination reversal assesses cognitive deficits because it involves higher-order learning and memory functions, and reversal depends on inhibition of a previously learned association. The widely used three-chamber choice task elucidates possible deficits in learning and memory pathways of the central nervous system5,6. Recently, this field has expanded to include non-mammalian models, such as zebrafish (Danio rerio), as several paradigms have been developed for a range of ages from larvae to adults7,8.
Zebrafish provide a balance of complexity and simplicity that is advantageous for the assessment of cognitive impairments with behavioral techniques. First, zebrafish are amenable to high-throughput behavioral screening given their small size and prolific reproductive nature. Second, zebrafish possess a structure, the lateral pallium, which is analogous to the mammalian hippocampus as it has similar neuronal markers and cell types7. Zebrafish are also able to acquire and remember spatial information9 and, like humans, are diurnal10. Therefore, it is not surprising that zebrafish are being used as a model for neurodegenerative diseases with increasing frequency. However, the absence of appropriate behavioral assays has made it difficult to apply the zebrafish model for cognitive assessments. Published work using zebrafish-specific behavioral assays include associative learning tasks11, anxiety behavior12, memory13, object recognition14, and conditioned-place-preference15,16,17,18,19. Though there have been many developments with respect to zebrafish behavioral assays, counterparts for some tests of cognitive functions in rodents have yet to be developed for use with zebrafish18.
Building on previous studies from our lab, we modeled/developed a cognitive task in zebrafish based on the three-chamber choice task used with rodents using social interaction as a reward. Additionally, we expanded upon the associative learning aspect of the behavioral task and incorporated contrast discrimination reversal in hopes of further developing this behavioral task to assess cognitive impairment. This enabled us to examine both the initial acquisition of discrimination learning and the subsequent inhibition of that learning in the reversal phase. In the current study, we demonstrate that this procedure provided a reliable method for assessing cognitive functioning in zebrafish following glucose immersion for 4 or 8 weeks.
All experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at American University (protocol # 1606, 19-02).
1. Animals
2. Three-chamber choice testing chamber
NOTE: This behavioral technique was modified from Ruhl et al.20.
3. Behavioral tasks
4. Experimental treatment
5. Reversal
NOTE: Following experimental manipulation (as in section 4.2), the fish are tested in the final part of the 3-chamber choice paradigm—reversal. To do this, the rewarded side is reversed (compared to acquisition) such that fish previously rewarded with a shoal on the white side are now rewarded with a shoal on the black side and vice versa. In this way, reversal assesses whether the fish have learned where the reward (shoal) is located, irrespective of the color of the background.
Acclimation to the behavior chamber involves three days of training: 2 days of group acclimation followed by 1 day of individual acclimation. However, because we could not distinguish individual zebrafish from one another, we were only able to collect data during individual acclimation. At this time, experimental animals (n = 30), conditioned using a shoal-based reward, took an average of 125.11 s to reach their first decision (Figure 2A) and an average of 725.34 s (12 min) to complete the e...
Although there has been tremendous growth in the amount and variety of neuroscience research performed using zebrafish in the past 15 years24, behavioral assays are lacking in this species compared to mammalian model systems11,25,26. Here, we show that a three-chamber choice task developed for use with rodents can be adapted to assess the acquisition and reversal of a visual discrimination learning in zeb...
The authors have nothing to disclose.
We thank Sabrina Jones for her assistance adapting a rodent three-chamber choice paradigm to the zebrafish model and Jeremy Popowitz and Allison Murk for their help on behavior collection days, assistance with running trials, animal care, and tank set-up. Special thanks also to James M. Forbes (Mechanical Engineer) for his assistance with the 3-chamber choice tank design and construction.
Funding: VPC and TLD received a joint Faculty Research Support grant (FRSG) from American University College of Arts and Sciences. CJR received support from American University College of Arts and Sciences Graduate Student Support.
Name | Company | Catalog Number | Comments |
Champion Sports Stopwatch Timer Set: Waterproof, Handheld Digital Clock Sport Stopwatches with Large Display for Kids or Coach - Bright Colored 6 Pack | Amazon | N/A | https://www.amazon.com/Champion-Sports-910SET-Stopwatch-Timer/dp/B001CD9LJK/ref=sr_1_17?dchild=1&keywords=stopwatch+for+sports&qid=1597081570&sr=8-17 Recommend two of different colors; one for choice latency and one for time to completion |
Coofficer Extra Large Binder Clips 2-Inch (24 Pack), Big Paper Clamps for Office Supplies, Black | Amazon | N/A | https://www.amazon.com/Coofficer-Binder-2-Inch-Clamps-Supplies/dp/B07C94YCR5/ref=sr_1_3_sspa?dchild=1&keywords=large+binder+clips&qid=1597081521&sr=8-3-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUExUENWUTRZVjlIWEVPJmVuY3J5cHRlZElkPUEwNDQ5NDU0MlpSREkwTFlLSThVQiZlbmNyeXB0ZWRBZElkPUEwMTg5NDI3MllRV1EzOUdWTVpSOCZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU= |
Marineland® Silicone Aquarium Sealant | Petsmart | Item #2431002 | |
PVC (Polyvinyl Chloride) Sheet, Opaque Gray, Standard Tolerance, UL 94/ASTM D1784, 0.125" Thickness, 12" Width, 24" Length | Amazon | N/A | https://www.amazon.com/Polyvinyl-Chloride-Standard-Tolerance-Thickness/dp/B000MAMGEQ/ref=sr_1_2?dchild=1&keywords=grey+PVC+sheet&qid=1597081440&sr=8-2 |
Steelworks 1/4-in W x 8-ft L Mill Finished Aluminum Weldable Trim U-shaped Channel | Lowes | Item #55979Model #11377 | https://www.lowes.com/pd/Steelworks-1-4-in-W-x-8-ft-L-Mill-Finished-Aluminum-Weldable-Trim-Channel/3058181 |
Tetra 10 Gallon Fish tank | Petsmart | Item #5271256 | |
Top Fin Fine Mesh Fish Net (3 in) | Petsmart | Item #5175115 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved