JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Medicine

Quantification of Absolute Myocardial Flow and Resistance by Continuous Thermodilution in Patients with Ischemia and Nonobstructive Coronary Artery Disease (INOCA)

Published: April 24th, 2021

DOI:

10.3791/62066

1Radboud University Medical Center, 2Catharina Hospital Eindhoven

Presented here is a protocol to measure absolute myocardial flow and resistance using continuous thermodilution in patients with ischemia and nonobstructive coronary artery disease.

In approximately half of the patients undergoing coronary angiography for angina pectoris or for signs or symptoms suggestive of ischemic heart disease, no obstructive coronary artery disease is angiographically visible. The majority of these patients with angina or ischemia and no obstructive coronary artery disease (INOCA) have an underlying coronary vasomotor dysfunction, and current consensus documents recommend diagnostic invasive coronary vasomotor function testing (CFT).

During CFT, a variety of vasomotor dysfunction endotypes can be assessed, including vasospastic coronary dysfunction (epicardial or microvascular vasospasm), and/or microvascular vasodilatory dysfunction, including impaired vasodilatory capacity and increased microvascular resistance. The quantification of the continuous thermodilution derived absolute coronary blood flow and resistance might be a better measure compared to the currently used standard physiologic measures. This article provides an overview of this continuous thermodilution method.

In approximately half of the patients undergoing coronary angiography for angina pectoris or for signs or symptoms suggestive of ischemic heart disease, no obstructive coronary artery disease is angiographically visible1. The majority of these patients with angina or ischemia and no obstructive coronary artery disease (INOCA) have an underlying coronary vasomotor dysfunction, and current ESC guidelines and a recent ESC position paper on INOCA recommend diagnostic invasive coronary vasomotor function testing (CFT)1,2.

During CFT, a variety of vasomotor dysfunc....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The following protocol was approved by the local medical ethics committee at the Radboudumc hospital, Nijmegen, the Netherlands. The following steps should be followed when performing continuous thermodilution to calculate absolute flow and resistance.

1. Preparations

  1. Withhold vasoactive medications for at least 24 hours (48 hours in case of calcium channel blockers).

2. Diagnostic Coronary Angiography

  1. Inject local anesthesia (1 to 2 m.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Figure 2 shows a representative measurement performed in patient A with no obstructive CAD on coronary angiography. The LAD artery was measured using continuous thermodilution to calculate absolute Q and R. The red and green lines represent pressure measurements, and the blue line represents the temperature curve. The infusion rate was set at 20 mL/min (Qi) since the LAD artery was measured. At point 1, the infusion was started and the temperature measured at the distally placed pressur.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Continuous thermodilution is an accurate method to measure absolute coronary flow and resistance, which has been shown to strongly agree with the gold standard [15O2]H2O PET derived flow and resistance5. These measurements are of special interest in INOCA patients, with current clinical guidelines recommending the assessment of coronary flow and resistance in this group.

Fractional flow reserve (FFR), the ratio of the maximal myocardial .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

None.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Rayflow multipurpose infusion catheter Hexacath RFW61S Only compatible with 6F guiding catheter
PressureWire X guidewire Abbott C12059 Wireless guidewire with distal temperature and pressure sensor
Coroventis CoroFlow Cardiovascular System software Coroventis N/A Advanced platform to measure physiological indices
Illumena Neo injector or similar injector system Liebel-Flarsheim GU01181006-E Any injector with pressure limit (600 psi) and adjustable flow and volume injection rate
100 ml NaCl 0.9% at room temperature

  1. Kunadian, V., et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. European Heart Journal. 41 (37), 3504-3520 (2020).
  2. Knuuti, J., et al. ESC Guidelines for the diagnosis and management of chronic coronary syndromes. European Heart Journal. 41 (3), 407-477 (2020).
  3. Beltrame, J. F., et al. International standardization of diagnostic criteria for vasospastic angina. European Heart Journal. 38 (33), 2565-2568 (2017).
  4. Ong, P., et al. International standardization of diagnostic criteria for microvascular angina. International Journal of Cardiology. 250, 16-20 (2018).
  5. Everaars, H., et al. Continuous thermodilution to assess absolute flow and microvascular resistance: validation in humans using [15O]H2O positron emission tomography. European Heart Journal. 40 (28), 2350-2359 (2019).
  6. Konstantinou, K., et al. Absolute microvascular resistance by continuous thermodilution predicts microvascular dysfunction after ST-elevation myocardial infarction. International Journal of Cardiology. 319, 7-13 (2020).
  7. Xaplanteris, P., et al. Catheter-Based Measurements of Absolute Coronary Blood Flow and Microvascular Resistance: Feasibility, Safety, and Reproducibility in Humans. Circulation Cardiovascular Interventions. 11 (3), 006194 (2018).
  8. Konst, R. E., et al. Absolute Coronary Blood Flow Measured by Continuous Thermodilution in Patients With Ischemia and Nonobstructive Disease. Journal of the American College of Cardiology. 77 (6), 728-741 (2021).
  9. Neumann, F. J., et al. ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal. 40 (2), 87-165 (2019).
  10. Aarnoudse, W., et al. Direct volumetric blood flow measurement in coronary arteries by thermodilution. Journalof the American College of Cardiology. 50 (24), 2294-2304 (2007).
  11. van't Veer, M., et al. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation. EuroIntervention: Journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. 12 (6), 701-707 (2016).
  12. Fournier, S., et al. Normal Values of Thermodilution-Derived Absolute Coronary Blood Flow and Microvascular Resistance in Humans. EuroIntervention: Journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. , (2020).
  13. Keulards, D. C. J., et al. Safety of Absolute Coronary Flow And Microvascular Resistance Measurements by Thermodilution. EuroIntervention: Journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology. , (2020).
  14. Konijnenberg, L. S. F., et al. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovascular Research. 116 (4), 787-805 (2020).
  15. Wijnbergen, I., van't Veer, M., Lammers, J., Ubachs, J., Pijls, N. H. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase. Cardiovascular Revascularization Medicine: including Molecular Interventions. 17 (2), 81-87 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved