A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here, we present a protocol to robustly generate and expand human cardiomyocytes from patient peripheral blood mononuclear cells.
Generating patient-specific cardiomyocytes from a single blood draw has attracted tremendous interest in precision medicine on cardiovascular disease. Cardiac differentiation from human induced pluripotent stem cells (iPSCs) is modulated by defined signaling pathways that are essential for embryonic heart development. Numerous cardiac differentiation methods on 2-D and 3-D platforms have been developed with various efficiencies and cardiomyocyte yield. This has puzzled investigators outside the field as the variety of these methods can be difficult to follow. Here we present a comprehensive protocol that elaborates robust generation and expansion of patient-specific cardiomyocytes from peripheral blood mononuclear cells (PBMCs). We first describe a high-efficiency iPSC reprogramming protocol from a patient's blood sample using non-integration Sendai virus vectors. We then detail a small molecule-mediated monolayer differentiation method that can robustly produce beating cardiomyocytes from most human iPSC lines. In addition, a scalable cardiomyocyte expansion protocol is introduced using a small molecule (CHIR99021) that could rapidly expand patient-derived cardiomyocytes for industrial- and clinical-grade applications. At the end, detailed protocols for molecular identification and electrophysiological characterization of these iPSC-CMs are depicted. We expect this protocol to be pragmatic for beginners with limited knowledge on cardiovascular development and stem cell biology.
The discovery of human induced pluripotent stem cells has revolutionized modern cardiovascular medicine1,2. Human iPSCs are capable of self-renewing and generating all cell types in the heart, including cardiomyocytes, endothelial cells, smooth muscle cells and cardiac fibroblasts. Patient iPSC-derived cardiomyocytes (iPSC-CMs) can serve as indefinite resources for modeling genetically inheritable cardiovascular diseases (CVDs) and testing cardiac safety for new drugs3. In particular, patient iPSC-CMs are well poised to investigate genetic and molecular etiologies of CVDs that are derived from defects in cardiomyocytes, such as long QT syndrome4 and dilated cardiomyopathy (DCM)5. Combined with CRISPR/Cas9-mediated genome editing, patient iPSC-CMs have opened an unprecedented avenue to understand the complex genetic basis of CVDs including congenital heart defects (CHDs)6,7,8. Human iPSC-CMs have also exhibited potentials to serve as autologous cell sources for replenishing the damaged myocardium during a heart attack9. In recent years, it has become paramount to generate high-quality human iPSC-CMs with defined subtypes (atrial, ventricular and nodal) for cardiac regeneration and drug testing10.
Cardiac differentiation from human iPSCs has been greatly advanced in the past decade. Differentiation methods have gone from embryoid body (EB)-based spontaneous differentiation to chemically defined and directed cardiac differentiation11. Key signaling molecules essential for embryonic heart development, such as Wnt, BMP, Nodal, and FGF are manipulated to enhance cardiomyocyte differentiation from human iPSCs10,12. Significant advances include sequential modulation of Wnt signaling (activation followed by inhibition) for robust generation of cardiomyocytes from human iPSCs13,14. Chemically defined cardiac differentiation recipes have been explored to facilitate large-scale production of beating cardiomyocytes15,16, which have the potential to be upgraded to industrial and clinical level production. Moreover, robust expansion of early human iPSC-CMs is achieved by exposure to constitutive Wnt activation using a small chemical (CHIR99021)17. Most recently, subtype-specific cardiomyocytes are generated through manipulation of retinoic acid (RA) and Wnt signaling pathways at specific differentiation windows during cardiomyocyte lineage commitment from human iPSCs18,19,20,21,22.
In this protocol, we detail a working procedure for robust generation and proliferation of human CMs originating from patient peripheral blood mononuclear cells. We present protocols for 1) reprogramming human PBMCs to iPSCs, 2) robust generation of beating cardiomyocytes from human iPSCs, 3) rapid expansion of early iPSC-CMs, 4) molecular characterization of human iPSC-CMs, and 5) electrophysiological measurement of human iPSC-CMs at the single-cell level by patch clamp. This protocol covers the detailed experimental procedures on converting patient blood cells into beating cardiomyocytes.
The experimental protocols and informed consent for human subjects were approved by the Institutional Review Board (IRB) at Nationwide Children's Hospital.
1. Preparation of cell culture media, solutions, and reagents
2. iPSC reprogramming of PBMCs
3. Human iPSC maintenance and passaging
4. Chemically defined cardiomyocyte differentiation
5. Passage human iPSC-CMs
6. Expansion of human iPSC-CMs
7. Immunofluorescence
8. Flow cytometry sample preparation
9. Real time qPCR
10. Whole-cell patch clamp recording
Human iPSC reprogramming from PBMCs
After pre-culture with Complete Blood Media for 7 days, PBMCs become large with visible nuclei and cytoplasm (Figure 1B), indicating that they are ready for virus transfection. After transfection with the Sendai virus reprogramming factors, PBMCs will undergo an epigenetic reprogramming process for another week. Typically, we get 30-50 iPSC colonies from the transfection of 1 x 105 PBMCs an...
During iPSC reprogramming, it is critical to culture PBMCs for 1 week until they are enlarged with clear nuclei and cytoplasm. Because PBMCs do not proliferate, an appropriate cell number for viral transduction is important for successful iPSC reprogramming. Cell number of PBMCs, multiplicity of infection (MOI) and titer of virus should be considered and adjusted to reach the optimal transduction outcomes. For cardiac differentiation, initial seeding density is critical for iPSCs to reach over 90% confluent on the day wh...
The authors declare no competing financial interests.
This study was supported by the American Heart Association (AHA) Career Development Award 18CDA34110293 (M-T.Z.), Additional Ventures AVIF and SVRF awards (M-T.Z.), National Institutes of Health (NIH/NHLBI) grants 1R01HL124245, 1R01HL132520 and R01HL096962 (I.D.). Dr. Ming-Tao Zhao was also supported by startup funds from the Abigail Wexner Research Institute at Nationwide Children's Hospital.
Name | Company | Catalog Number | Comments |
ABI 7300 Fast Real-Time PCR System | Thermo Fisher Scientific | ||
Axon Axopatch 200B Microelectrode Amplifier | Molecular Devices | Microelectrode Amplifier | |
B27 supplement | Thermo Fisher Scientific | 17504044 | |
B27 supplement minus insulin | Thermo Fisher Scientific | A1895601 | |
BD Cytofix/Cytoperm Fixation/Permeabilization Kit | BD Biosciences | 554714 | Fixation/Permeabilization solution, Perm/Wash buffer |
BD Vacutainer CPT tube | BD Biosciences | 362753 | Blood cell separation tube |
CHIR99021 | Selleck Chemicals | S2924 | |
CytoTune-iPS 2.0 Sendai Reprogramming Kit | Thermo Fisher Scientific | A16517 | Sendai virus reprogramming kit |
Digidata 1200B | Axon Instruments | Acquisition board | |
Direct-zol RNA Miniprep kit | Zymo Research | R2050 | RNA extraction kit |
DMEM/F12 | Thermo Fisher Scientific | 11330057 | |
Essential 8 medium | Thermo Fisher Scientific | A1517001 | E8 media for iPSC culture |
GlutaMAX supplement | Thermo Fisher Scientific | 35050061 | L-glutamine alternative |
Growth factor reduced Matrigel | Corning | 356231 | Basement membrane matrix |
iScript cDNA Snythesis Kit | Bio-Rad | 1708891 | cDNA synthesis |
IWR-1-endo | Selleck Chemicals | S7086 | |
KnockOut Serum Replacement (KSR) | Thermo Fisher Scientific | 10828028 | |
pCLAMP 7.0 | Molecular Devices | Electrophysiology data acquisition & analysis software | |
Recombinant human EPO | Thermo Fisher Scientific | PHC9631 | |
Recombinant human FLT3 | Thermo Fisher Scientific | PHC9414 | |
Recombinant human IL3 | Peprotech | 200-03 | |
Recombinant human IL6 | Thermo Fisher Scientific | PHC0065 | |
Recombinant human SCF | Peprotech | 300-07 | |
RPMI 1640 medium | Thermo Fisher Scientific | 11875093 | |
RPMI 1640 medium, no glucose | Thermo Fisher Scientific | 11879020 | |
SlowFade Gold Antifade Mountant | Thermo Fisher Scientific | S36936 | Mounting media |
StemPro-34 SFM | Thermo Fisher Scientific | 10639011 | PBMC culture media |
TaqMan Fast Advanced Master Mix | Thermo Fisher Scientific | 4444964 | qPCR master mix |
TrypLE Select Enzyme 10x, no phenol red | Thermo Fisher Scientific | A1217703 | CM dissociation solution |
UltraPure 0.5 M EDTA | Thermo Fisher Scientific | 15575020 | iPSC dissociation solution |
Y-27632 2HCl | Selleck Chemicals | S1049 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved