JoVE Logo
Faculty Resource Center

Sign In

Abstract

Bioengineering

Injectable Supramolecular Polymer-Nanoparticle Hydrogels for Cell and Drug Delivery Applications

Published: February 7th, 2021

DOI:

10.3791/62234

1Department of Materials Science & Engineering, Stanford University, 2Department of Chemical Engineering, Stanford University, 3Department of Bioengineering, Stanford University, 4Department of Pediatrics - Endocrinology, Stanford University
* These authors contributed equally

These methods describe how to formulate injectable, supramolecular polymer-nanoparticle (PNP) hydrogels for use as biomaterials. PNP hydrogels are composed of two components: hydrophobically modified cellulose as the network polymer and self-assembled core-shell nanoparticles that act as non-covalent cross linkers through dynamic, multivalent interactions. These methods describe both the formation of these self-assembled nanoparticles through nanoprecipitation as well as the formulation and mixing of the two components to form hydrogels with tunable mechanical properties. The use of dynamic light scattering (DLS) and rheology to characterize the quality of the synthesized materials is also detailed. Finally, the utility of these hydrogels for drug delivery, biopharmaceutical stabilization, and cell encapsulation and delivery is demonstrated through in vitro experiments to characterize drug release, thermal stability, and cell settling and viability. Due to its biocompatibility, injectability, and mild gel formation conditions, this hydrogel system is a readily tunable platform suitable for a range of biomedical applications.

Tags

Keywords Injectable

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved