Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Using a self-organizing method, we develop a protocol with the addition of COCO that could significantly increase the generation of photoreceptors.

Abstract

Retinal cell transplantation is a promising therapeutic approach, which could restore the retinal architecture and stabilize or even improve the visual capabilities to the degenerated retina. Nevertheless, progress in cell replacement therapy presently faces the challenges of requiring an off-the-shelf source of high quality and standardized human retinas. Therefore, an easy and stable protocol is needed for the experiments. Here, we develop an optimized protocol, based on a self-organizing method with the use of exogenous molecules and reagent A as well as manual excision to generate the three-dimensional human retina organoids (RO). The human Pluripotent Stem Cells (PSCs)-derived RO expresses specific markers for photoreceptors. With the addition of COCO, a multifunctional antagonist, the differentiation efficiency of photoreceptor precursors and cones is significantly increased. The efficient use of this system, which has the benefits of cell lines and primary cells, and without the sourcing issues associated with the latter, could produce confluent retinal cells, especially photoreceptors. Thus, the differentiation of PSCs to RO provides an optimal and biorelevant platform for disease modelling, drug screening and cell transplantation.

Introduction

Pluripotent stem cells (PSCs) are characterized by their self-renewal and ability to differentiate into all kinds of somatic cells. Thus, organoids derived from PSCs have become an important resource in regenerative medicine research. Retinal degeneration is characterized by the loss of photoreceptors (rods and cones) and retinal pigment epithelium. Retinal cell replacement could be an encouraging treatment for this disease. However, it is not feasible to obtain human retinas for disease research and therapy. Therefore, retinal organoids (ROs) derived from PSCs, which effectively and successfully recapitulate multi-layered native retinal cells, are beneficial for basi....

Protocol

This study was approved by the institutional Ethics Committee of Beijing Tongren Hospital, Capital Medical University. H9 hESCs were obtained from the WiCell Research Institute and genetically engineered to tdTomato-tagged cell line.

1. Generation of human ROs

  1. Culture the hESCs under feeder-free conditions.
    1. Coat one well of a 6-well plate with 1 mL of 0.1 mg/mL reagent A (Table of Materials) at 37 °C for at least half an hour following the manufact.......

Representative Results

The schematic illustration depicts the differentiation protocol to improve precursor cells with COCO (Figure 1). From PSC to ROs, numerous details could cause result variations. It is recommended to record every step and even the catalog number and lot number of every medium to track the entire procedure.

Herein, we provide bright field images for days 6, 12, 18, and 45 (Figure 2). On day 6, the organoids are usually around 600 µ.......

Discussion

Retinal organoid differentiation is a desirable method for the generation of ample functional retinal cells. The RO is a composite of different retinal cells, such as ganglion cells, bipolar cells, and photoreceptors, generated by pluripotent stems cells toward the neural retina4,5,8,9. Although confluent ROs could be harvested, it is time-consuming, which may require long culturing periods (up.......

Acknowledgements

We thank members of 502 laboratory for their technical supports and helpful comments regarding the manuscript. This work was partly supported by the Beijing Municipal Natural Science Foundation (Z200014) and National Key R&D Program of China (2017YFA0105300).

....

Materials

NameCompanyCatalog NumberComments
2-mercaptoethanolLife Technologies21985-023
COCOR&D Systems3047-CC-050DAN Domain family of BMP antagonists
DMEM/F-12Gibco10565-042
DMSOSigmaD2650
DPBSGibcoC141905005BT
EDTAThermo15575020
Fetal Bovine Serum (FBS), Qualified for Human Embryonic Stem CellsBiological Industry04-002-1A
GMEMGibco11710-035
KnockOut Serum Replacement-Multi-SpeciesGibcoA3181502
MEM Non-essential Amino Acid Solution (100X)sigmaM7145
Pen StrepGibco15140-122
Primesurface 96 V-plateSbioMS9096SZCell aggregation in 1.2.7
PyruvateSigmaS8636
Reagent ABD356231Matrigel in 1.1.1
Reagent BStemCell5990mTeSR- E8 , PSCs basal medium in 1.1.2
Reagent CGibco12563-011TrypLE Express in 1.2
Reagent DRoche11284932001DNase I , in 1.2
Retinoic acidSigmaR2625-100MG
SAGEnzo Life ScienceALX-270-426-M001
Supplement 1Life Technologies17502-048N-2 Supplement (100X), Liquid, supplemet in medum III
TaurineSigmaT-8691-25G
Trypsin-EDTA (0.25%), phenol redGibco25200056organoids dissociation in 2.1.3
Wnt Antagonist I, IWR-1-endo - CalbiochemSigma681669Wnt inhibitor
Y-27632 2HClSelleckS1049

References

Explore More Articles

Retinal OrganoidsHuman Pluripotent Stem CellsRetinal Disease ModelPhotoreceptor PrecursorsFeeder free Culture96 well PlateCell SuspensionCell CountingMedium ReplacementCell Harvesting

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved