Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a protocol for the characterization of motility and behavior of a population of hundred micron- to millimeter-sized cells using brightfield microscopy and cell tracking. This assay reveals that Stentor coeruleus transitions through four behaviorally distinct phases when regenerating a lost oral apparatus.

Abstract

Stentor coeruleus is a well-known model organism for the study of unicellular regeneration. Transcriptomic analysis of individual cells revealed hundreds of genesmany not associated with the oral apparatus (OA)—that are differentially regulated in phases throughout the regeneration process. It was hypothesized that this systemic reorganization and mobilization of cellular resources towards growth of a new OA will lead to observable changes in movement and behavior corresponding in time to the phases of differential gene expression. However, the morphological complexity of S. coeruleus necessitated the development of an assay to capture the statistics and timescale. A custom script was used to track cells in short videos, and statistics were compiled over a large population (N ~100). Upon loss of the OA, S. coeruleus initially loses the ability for directed motion; then starting at ~4 h, it exhibits a significant drop in speed until ~8 h. This assay provides a useful tool for the screening of motility phenotypes and can be adapted for the investigation of other organisms.

Introduction

Stentor coeruleus (Stentor) is a well-known model organism that has been used to study unicellular regeneration owing to its large size, ability to withstand several microsurgical techniques, and ease of culturing in a laboratory setting1,2,3. Early regeneration studies focused on the largest and most morphologically distinct feature in Stentor—the OA—which is shed completely upon chemical shock4,5,6. De novo replacement of a lost OA be....

Protocol

NOTE: A population of approximately one hundred S. coeruleus cells were cultured in accordance with a previously published JoVE protocol8.

1. Sample preparation

  1. Cut a piece of 250 µm-thick silicone spacer sheet (Table of Materials) slightly smaller in both height and width than a microscope slide. Using a 5/16" hole punch, create circular wells. Be mindful of leaving sufficient space between neighboring wells to ensure a go.......

Representative Results

The goal of this assay is to quantify the gradual change of movement patterns and phased increase in movement speed from cells within a large (N ~100) regenerating Stentor population. To aid interpretation of results, the custom code included in this protocol generates two types of plots: an overlay of all cell movement traces in a set of video data (Figure 1C-F and Figure S1), and a plot of swim speed by hour since the start of reg.......

Discussion

Many particle and cell tracking algorithms currently exist, some entirely free. Cost and user-friendliness are often trade-offs requiring compromise. Additionally, many of the existing cell-tracking programs are designed to track slow crawling motion of tissue culture cells, rather than the fast swimming motion of Stentor, which rotates while swimming and can undergo sudden changes of direction. After testing many of these options, the protocol presented here is intended to be a one-stop solution to go all the w.......

Acknowledgements

This work was supported, in part, by Marine Biological Laboratory Whitman Early Career Fellowship (JYS). We acknowledge Evan Burns, Mit Patel, Melanie Melo, and Skylar Widman for helping with some of the preliminary analysis and code testing. We thank Mark Slabodnick for discussion and suggestions. WFM acknowledges support from NIH grant R35 GM130327.

....

Materials

NameCompanyCatalog NumberComments
0.25 mm-thick silicone sheetGrace Bio-LabsCWS-S-0.25
24 x 50 mm, #1.5 coverglassFisher ScientificNC1034527As noted in Discussion, smaller coverglass can be used if fewer sample wells are placed on one slide.
CCD cameraWe used Nikon D750
Chlamydomonas 137c WT strainChlamydomonas Resource CenterCC-125
MATLABMATHWORKS
MATLAB Image Processing ToolboxMATHWORKSneeded for TrackCells.m and CleanTraces.m
MATLAB Statistics and Machine Learning ToolboxMATHWORKSneeded for TrackCells.m
Microscope with camera portWe used Zeiss AxioZoom v1.6 and Leica S9E
Pasteurized Spring WaterCarolina132458
TAP Growth MediaThermoFisher ScientificA1379801Can also be made for much cheaper following recipe from Chlamy Resource Center

References

Explore More Articles

Stentor CoeruleusMotility PatternsOral Apparatus RegenerationCell TrackingUnicellular RegenerationFunctional RegenerationSynchronized RegenerationMotility QuantificationSilicone SpacerSample Chambers10 Sucrose2 UreaTime lapse MicroscopyImage CalibrationCell Tracking Scripts

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved