A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
The mechanism associated with phagocytosis in Leishmania infection remains poorly understood. Here, we describe methods to evaluate the early events occurring during Leishmania interaction with the host cells.
Phagocytosis is an orchestrated process that involves distinct steps: recognition, binding, and internalization. Professional phagocytes take up Leishmania parasites by phagocytosis, consisting of recognizing ligands on parasite surfaces by multiple host cell receptors. Binding of Leishmania to macrophage membranes occurs through complement receptor type 1 (CR1) and complement receptor type 3 (CR3) and Pattern Recognition Receptors. Lipophosphoglycan (LPG) and 63 kDa glycoprotein (gp63) are the main ligands involved in macrophage-Leishmania interactions. Following the initial recognition of parasite ligands by host cell receptors, parasites become internalized, survive, and multiply within parasitophorous vacuoles. The maturation process of Leishmania-induced vacuoles involves the acquisition of molecules from intracellular vesicles, including monomeric G protein Rab 5 and Rab 7, lysosomal associated membrane protein 1 (LAMP-1), lysosomal associated membrane protein 2 (LAMP-2), and microtubule-associated protein 1A/1B-light chain 3 (LC3).
Here, we describe methods to evaluate the early events occurring during Leishmania interaction with the host cells using confocal microscopy, including (i) binding (ii) internalization, and (iii) phagosome maturation. By adding to the body of knowledge surrounding these determinants of infection outcome, we hope to improve the understanding of the pathogenesis of Leishmania infection and support the eventual search for novel chemotherapeutic targets.
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania, resulting in a broad spectrum of clinical manifestations in the vertebrate host, including cutaneous leishmaniasis, mucocutaneous leishmaniasis and visceral leishmaniasis1. The World Health Organization (WHO) estimates that over one billion people are at risk, with more than one million new cases reported per year2.
Leishmania spp. are obligate intracellular protozoans that survive inside host cells, including monocytes, macrophages and dendritic cells3<....
Cells were obtained from healthy donors following the approval of procedures by the National Research Ethics Committees (ID: 94648218.8.0000.0040).
1. Cell cultures
This report aims to evaluate the early events occurring during the phagocytosis of L. braziliensis isolated from patients presenting L. braziliensis-LCL or L. braziliensis-DL form of CL. Using confocal microscopy, we investigated the main events associated with parasites' phagocytosis: binding, internalization, and phagosome maturation. We first evaluated the L. braziliensis-LCL or L. braziliensis-DL binding and phagocytosis by human monocyte-derived macrophages. The data .......
Leishmania-macrophage interaction is a complex process and involves several steps that can influence disease development5. To better understand the mechanisms involved in the interaction of unopsonized Leishmania and host cells, we have described a protocol that employs confocal fluorescence microscopy to assess phagocytosis from early to late stages of Leishmania infection. The use of fluorescence techniques involving two or more fluorophores to investigate cell biology.......
We thank Gonçalo Moniz Institute, Fiocruz Bahia, Brazil and the department of microscopy for assistance. This work was supported by INOVA-FIOCRUZ number 79700287000, P.S.T.V. holds a grant for productivity in research from CNPq (305235/2019-2). Plasmids were kindly provided by Mauricio Terebiznik, University of Toronto, CA. The authors would like to thank Andris K. Walter for English language revision and manuscript copyediting assistance.
....Name | Company | Catalog Number | Comments |
2-mercaptoethanol | Thermo Fisher Scientific | 21985023 | |
AlexaFluor 488-conjugated goat anti-rabbit IgG | Thermo Fisher Scientific | Tem varios no site | |
anti-LC3 antibody | Novus Biologicals | NB600-1384 | |
Bovine serum albumin (BSA) | Thermo Fisher Scientific | X | |
CellStripper | Corning | 25-056-CI | |
CellTracker Red (CMTPX) Dye | Thermo Fisher Scientific | C34552 | |
Centrífuga | Thermo Fisher Scientific | ||
Ciprofloxacin | Isofarma | X | |
CO2 incubator | Thermo Fisher Scientific | X | |
Confocal fluorescence microscope (Leica SP8) | Leica | Leica SP8 | |
Fetal Bovine Serum (FBS) | Gibco | 10270106 | |
Fluorescence microscope (Olympus Lx73) | Olympus | Olympus Lx73 | |
Gentamicin | Gibco | 15750045 | |
Glutamine | Thermo Fisher Scientific | 35050-061 | |
HEPES (N- 2-hydroxyethyl piperazine-N’-2-ethane-sulfonic acid) | Gibco | X | |
Histopaque | Sigma | 10771 | |
M-CSF | Peprotech | 300-25 | |
NH4Cl | Sigma | A9434 | |
Normal goat serum | Sigma | NS02L | |
Nucleofector 2b Device | Lonza | AAB-1001 | |
Nucleofector solution | Lonza | VPA-1007 | |
Paraformaldehyde | Sigma | 158127 | |
Phalloidin | Invitrogen | A12379 | |
Phorbol myristate acetate (PMA) | Sigma | P1585 | |
Phosphate buffer solution (PBS) | Thermo Fisher Scientific | 10010023 | |
ProLong Gold Antifade kit | Life Technologies | P36931 | |
Roswell Park Memorial Institute (RPMI) 1640 medium | Gibco | 11875-093 | |
Saponin | Thermo Fisher Scientific | X | |
Schneider's Insect medium | Sigma | S0146 | |
Sodium bicarbonate | Sigma | S5761 | |
Sodium pyruvate | Sigma | S8636 | |
Triton X-100 | Sigma | X |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved