A subscription to JoVE is required to view this content. Sign in or start your free trial.
Phenolic acids are important phytochemicals that are present in whole grains. They possess bioactive properties such as antioxidant protective functions. This work aimed at reporting on a generalized method for the HPLC identification, total phenolic content estimation, and determination of the antioxidant capacity of phenolic acids in cereals and legumes.
Phenolic acids are a class of organic compounds that bear both a phenolic group, and a carboxylic group. They are found in grains and concentrate in the bran of cereals or seed coat of legumes. They possess antioxidant properties that have generated much research interest in recent years, about their potential antioxidant protective health functions. This work presents a generalized method for the extraction of free soluble phenolic acids from whole grains and analysis of their antioxidant capacity. Five whole grain samples comprising two cereals (wheat and yellow corn) and three legumes (cowpea bean, kidney bean, and soybean), were used. The grains were milled into flour and their free soluble phenolic acids extracted using aqueous methanol. The compounds were then identified using a high-pressure liquid chromatograph (HPLC). The Folin-Ciocalteu method was used to determine their total phenolic content while their antioxidant capacities were determined using the DPPH radical scavenging capacity, Trolox equivalent antioxidant capacity (TEAC) and oxygen radical absorbance capacity (ORAC) assays. The phenolic acids identified included vanillic, caffeic, p-coumaric and ferulic acids. Vanillic acid was identified only in cowpea while caffeic acid was identified only in kidney bean. p-Coumaric acid was identified in yellow corn, cowpea, and soybean, while ferulic acid was identified in all the samples. Ferulic acid was the predominant phenolic acid identified. The total concentration of phenolic acids in the samples decreased in the following order: soybean > cowpea bean > yellow corn = kidney bean > wheat. The total antioxidant capacity (sum of values of DPPH, TEAC and ORAC assays) decreased as follows: soybean > kidney bean > yellow corn = cowpea bean > wheat. This study concluded that HPLC analysis as well as DPPH, TEAC, and ORAC assays provide useful information about the phenolic acid composition and antioxidant properties of whole grains.
Phenolic acids are among the most important phytochemicals studied in plants due to the vital role they play in plant defense against herbivory and fungal infection, as well as maintaining structural support and integrity in plant tissues1,2. They are abundant in the bran of cereals and seed coat of legumes3. Structurally, they are divided into two groups: the hydroxybenzoic acids (Figure 1) and hydroxycinnamic acids (Figure 2). The common hydroxybenzoic acids in cereals and legumes include gallic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, protocatechuic, vanillic, and syringic acids, while the common hydroxycinnamic acids include caffeic, p-coumaric, ferulic, and sinapic acids3. Phenolic acids also possess antioxidant properties since they are able to scavenge free radicals, which cause oxidative rancidity in fats, and initiate and propagate radical-induced oxidative stress in physiological systems4,5. Due to this vital physiological role as antioxidants, they are the subject of recent research. This is because when consumed as components of plant foods, they can exert antioxidant protection.
Cereals and cereal products are major carbohydrate food sources for humans and animals worldwide6. Cereals include wheat, rice, corn (maize), barley, triticale, millets, and sorghum. Among them, corn is the most utilized, with an estimated global utilization of 1,135.7 million tonnes in 2019/2020, followed by wheat with an estimated global utilization of 757.5 million tonnes during the same period7. Cereal foods are great sources of energy to consumers since they are rich sources of carbohydrates. They also provide some protein, fat, fiber, vitamins and minerals6. In addition to their nutritional value, cereals are good sources of phytochemical antioxidants, particularly phenolic acids, which have the potential to protect the physiological system from radical-induced oxidative damage3. Legumes are also good sources of nutrients and are generally higher in protein than cereals. They also contain vitamins and minerals and are used in the preparation of various foods8. Additionally, legumes are good sources of a variety of phytochemical antioxidants, including phenolic acids, flavonoids, anthocyanins, and proanthocyanidins9,10. Different varieties of cereals and legumes may have a different phenolic acid composition. There is therefore the need to study the phenolic acid composition of cereals and legumes and their varieties, in order to know their potential health benefits with respect to phenolic antioxidants.
A number of assays have been reported for measuring the quantity of phenolic acids in cereal and legume grains, and determining their antioxidant activities. The most common methods of analysis for whole grain phenolic acids are spectrophotometry and liquid chromatography11. The aim of this work was to demonstrate a generalized high pressure liquid chromatographic method for determining free soluble phenolic acid composition, and spectrophotometric methods for determining total phenolic content and antioxidant capacity of some whole grain cereals and legumes.
1. Type of samples
2. Sample preparation
3. Phenolic composition
4. Total phenolic content
NOTE: Determine the total phenolic content of the extracts using the Folin-Ciocalteu method described by F. B. Apea-Bah et al.13.
5. Antioxidant assays
NOTE: Determine the antioxidant capacity of the grain extracts using the following three assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity; 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging capacity, which is also called the Trolox equivalent antioxidant capacity (TEAC); and oxygen radical absorbance capacity (ORAC).
Table 2 shows the phenolic acids that were identified in the cereal and legume grains. Based on available authentic standards, four phenolic acids were identified in the samples and they are: vanillic, caffeic, p-coumaric, and ferulic acids. Vanillic acid is a hydroxybenzoic acid while the other three are hydroxycinnamic acids. Vanillic acid was identified only in Blackeye cowpea bean while caffeic acid was identified only in kidney bean. p-Coumaric acid was identified in yellow corn, c...
The whole grains were selected as representative cereal grains and legumes that find wide food applications worldwide. While variations may exist among cultivars of each grain, the focus of this study was to demonstrate a generalized method for free phenolic acid extraction and analysis for whole grains. The extraction method was modified by substantially reducing the amounts of samples and solvents, in order to reduce the amount of chemicals that would be released into the environment when such experiments are conducted...
The authors declare no conflicts of interest.
The authors gratefully acknowledge the technical support of Ms. Alison Ser and Ms. Hannah Oduro-Obeng, as well as the video editing support by Ms. Janice Fajardo and Mr. Miguel del Rosario.
Name | Company | Catalog Number | Comments |
15 mL Falcon conical centrifuge tubes | Fisher Scientific | 05-527-90 | |
2 mL Amber glass ID Surestop vial | Thermo Scientific | C5000-2W | |
2 mL Amber microcentrifuge tubes | VWR | 20170-084 | |
2,2′-Azobis(2-amidinopropane) dihydrochloride (AAPH) | Sigma-Aldrich | 440914-100G | |
2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) (C18H18N4O6S4) ≥98%, | Sigma Aldrich | A1888-2G | |
2,2-Diphenyl-1pikrylhydrazyl (DPPH) (C18H12N5O6) | Sigma Aldrich | D913-2 | |
6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) (C14H18O4), ≥98% | Fluka Chemika | 56510 | |
9 mm Autosampler Vial Screw Thread Caps | Thermo Scientific | 60180-670 | |
96 well flat bottom plates | Fisher Scientific | 12565501 | |
Agilent BioTek ELx800 microplate reader | Fisher Scientific | BT-ELX800NB | |
Agilent BioTek Precision 2000 96/384 Automated Microplate Pipetting System | Fisher Scientific | N/A | |
Agilent BioTek FLx800 Microplate Fluorescence Reader | Fisher Scientific | N/A | |
Analytical balance SI-114 | Denver Instrument | SI-114.1 | |
Autosampler, Waters 717 Plus | Waters | WAT078900 | |
BD 3 mL syringe Luer-Lok Tip | BD | 309657 | |
Bransonic ultrasonic cleaner, Branson 5510 | Millipore Sigma | Z245143 | |
Corning LSE Vortex Mixer | Corning | 6775 | |
Durapore Filter (0.45 µm PVDF Membrane) | Merck Millipore Ltd | HVLP04700 | |
Durapore Membrane Filters (0.45 µm HV) | Merck Millipore Ltd | HVHP04700 | |
Eppendorf Research plus, 0.5-10 µL | Eppendorf | 3123000020 | |
Eppendorf Research plus, 0.5-5 mL | Eppendorf | 3123000071 | |
Eppendorf Research plus, 100-1000 µL | Eppendorf | 3123000063 | |
Eppendorf Research plus, 10-100 µL | Eppendorf | 3123000047 | |
Ethyl acetate, HPLC grade | Fisher Chemical | E195-4 | |
Ferulic acid standard | Sigma Aldrich | 128708-5G | |
Fluorescein | Fisher Scientific | AC119245000 | |
Folin & Ciocalteu phenol reagent | Sigma Aldrich | F9252 | |
Formic acid, 99% | Acros Organics, Janssen Pharmaceuticalaan 3a | 27048-0010 | |
Gallic acid standard | Sigma | G7384 | |
High performance liquid chromatograph (HPLC), Waters 2695 | Waters | 960402 | |
Methanol, HPLC grade | Fisher Chemical | A452-4 | |
Micro pipet tips, 0.5-10 µL | Fisherbrand | 21-197-2F | |
Microcentrifuge Sorvall Legend Micro 21 centrifuge | Thermo Scientific | 75002435 | |
Multichannel micropipette, Proline Plus, 30-300 µL | Sartorius | 728240 | |
Photodiode array detector, Waters 2996 | Waters | 720000350EN | |
Pipet tips, 1000 µL | VWR | 83007-382 | |
Pipet tips, 1-5 mL | VWR | 82018-840 | |
Potassium persulfate (K2S2O8), ≥99.0% | Sigma Aldrich | 216224-100G | |
Potassium phosphate dibasic anhydrous (K2HPO4) | Fisher Scientific | P288-500 | |
Potassium phosphate monobasic (KH2PO4) | Fisher Scientific | P285-500 | |
PYREX 250 mL Short Neck Boiling Flask, Round Bottom | Corning | 4321-250 | |
Reversed phase C18 Analytical Column (100 x 3 mm) Accucore aQ | Thermo Scientific | 17326-103030 | |
Roto evaporator, IKA RV 10 | IKA | 0010005185 | |
Sodium carbonate (NaCO3) anhydrous | Fisher Chemical | S263-1 | |
Sodium chloride (NaCl) | Mallinckrodt AR® | 7581 | |
Sodium phosphate dibasic anhydrous (Na2HPO4) | Fisher Scientific | BP332-500 | |
Sodium phosphate monobasic anhydrous (NaH2PO4) | Fisher bioreagents | BP329-500 | |
Standardization pipet tips 0-200µL | Fisherbrand | 02-681-134 | |
Syringe Driven Filter unit (0.22 µm) | Millex®-GV | SLGVR04NL | |
Target micro-serts vial insert (400 µL) | Thermo Scientific | C4011-631 | |
Ultrapure water (Direct Q-3 UV system with pump) | Millipore | ZRQSVP030 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved