A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This paper aims to present a protocol for preparing recycling endosomes from mammalian cells using sucrose density gradient ultracentrifugation.
Endosomal trafficking is an essential cellular process that regulates a broad range of biological events. Proteins are internalized from the plasma membrane and then transported to the early endosomes. The internalized proteins could be transited to the lysosome for degradation or recycled back to the plasma membrane. A robust endocytic recycling pathway is required to balance the removal of membrane materials from endocytosis. Various proteins are reported to regulate the pathway, including ADP-ribosylation factor 6 (ARF6). Density gradient ultracentrifugation is a classical method for cell fractionation. After the centrifugation, organelles are sedimented at their isopycnic surface. The fractions are collected and used for other downstream applications. Described here is a protocol to obtain a recycling endosome-containing fraction from transfected mammalian cells using density gradient ultracentrifugation. The isolated fractions were subjected to standard Western blotting for analyzing their protein contents. By employing this method, we identified that the plasma membrane targeting of engulfment and cell motility 1 (ELMO1), a Ras-related C3 botulinum toxin substrate 1 (Rac1) guanine nucleotide exchange factor, is through ARF6-mediated endocytic recycling.
Endosomal trafficking is an essential physiological process that implicates various biological events1, for example, the transportation of signaling receptors, ion channels, and adhesion molecules. Proteins localized at the plasma membrane are internalized by endocytosis2. The internalized proteins are then sorted by the early endosome3. Some of the proteins are targeted to lysosomes for degradation4. However, a significant amount of proteins are recycled back to the cell surface by fast recycling and slow recycling processes. In fast recycling, proteins leave the early end....
1. Mammalian cell culture and transfection
2. Cell harvest
After fractionating the untransfected HEK293 cells by density gradient ultracentrifugation, 12 fractions were collected starting from the top of the gradient. The harvested fractions were diluted with the dilution buffer in a 1:1 ratio and subjected to a second round of centrifugation. The samples were then subjected to western blotting for analyzing their protein contents. As shown in Figure 1, the recycling endosome marker Rab11 is detected in fraction 720. Other su.......
The above protocol outlines the procedures for isolating recycling endosomes from cultured cells by ultracentrifugation. The reliability of this method has been demonstrated by the latest publication22, proving that recycling endosomes are successfully isolated from other organelles (Figure 1), such as the Golgi apparatus and mitochondria. Some critical steps need to be paid attention to for obtaining a good separation result. While preparing the sucrose solutions, it.......
This work was supported by funds from the Research Grants Council Hong Kong, CUHK direct grant scheme, United College endowment fund, and the TUYF Charitable Trust. The figures in this work were adapted from our previous publication, "ARF6-Rac1 signaling-mediated neurite outgrowth is potentiated by the neuronal adaptor FE65 through orchestrating ARF6 and ELMO1" published in the FASEB Journal in October 2020.
....Name | Company | Catalog Number | Comments |
1 mL, Open-Top Thickwall Polypropylene Tube, 11 x 34 mm | Beckman Coulter | 347287 | |
100 mm tissue culture dish | SPL | 20100 | |
13.2 mL, Certified Free Open-Top Thinwall Ultra-Clear Tube, 14 x 89 mm | Beckman Coulter | C14277 | |
5x Sample Buffer | GenScript | MB01015 | |
cOmplete, EDTA-free Protease Inhibitor Cocktail | Roche | 11873580001 | |
COX IV (3E11) Rabbit mAb | Cell Signaling Technology | 4850S | Rabbit monoclonal antibody for detecting COX IV. |
Cycloheximide | Sigma-Aldrich | C1988 | |
Dounce Tissue Grinder, 7 mL | DWK Life Sciences | 357542 | |
Dulbecco's Modified Eagle Medium (DMEM) with low glucose | HyClone | SH30021.01 | |
ELMO1 antibody (B-7) | Santa Cruz Biotechnology | SC-271519 | Mouse monoclonal antibody for detecting ELMO1. |
EndoFree Plasmid Maxi Kit | QIAGEN | 12362 | |
FE65 antibody (E-20) | Santa Cruz Biotechnology | SC-19751 | Goat polyclonal antibody for detecting FE65. |
Fetal Bovine Serum, Research Grade | HyClone | SV30160.03 | |
GAPDH Monoclonal Antibody (6C5) | Ambion | AM4300 | Mouse monoclonal antibody for detecting GAPDH. |
ImageLab Software | Bio-Rad | Measurement of band intensity | |
Imidazole | Sigma-Aldrich | I2399 | |
Lipofectamine 2000 Transfection Reagent | Invitrogen | 11668019 | |
Monoclonal Anti-β-COP antibody | Sigma | G6160 | Mouse monoclonal antibody for detecting β-COP. |
Myc-tag (9B11) mouse mAb | Cell Signaling Technology | 2276S | Mouse monoclonal antibody for detecting myc tagged proteins. |
OmniPur EDTA, Disodium Salt, Dihydrate | Calbiochem | 4010-OP | |
Optima L-100 XP | Beckman Coulter | 392050 | |
Optima MAX-TL | Beckman Coulter | A95761 | |
Opti-MEM I Reduced Serum Media | Gibco | 31985070 | |
PBS Tablets | Gibco | 18912014 | |
PhosSTOP | Roche | 4906845001 | |
RAB11A-Specific Polyclonal antibody | Proteintech | 20229-1-AP | Rabbit polyclonal antibody for detecting Rab11. |
Sucrose | Affymetrix | AAJ21931A4 | |
SW 41 Ti Swinging-Bucket Rotor | Beckman Coulter | 331362 | |
TLA-120.2 Fixed-Angle Rotor | Beckman Coulter | 362046 | |
Trypsin-EDTA (0.05%), phenol red | Gibco | 25300062 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved