Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol describes the development of a standardized, repeatable, preclinical model of exertional heat stroke (EHS) in mice free from adverse external stimuli such as electric shock. The model provides a platform for mechanistic, preventative, and therapeutic studies.

Abstract

Heat stroke is the most severe manifestation of heat-related illnesses. Classic heat stroke (CHS), also known as passive heat stroke, occurs at rest, whereas exertional heat stroke (EHS) occurs during physical activity. EHS differs from CHS in etiology, clinical presentation, and sequelae of multi-organ dysfunction. Until recently, only models of CHS have been well established. This protocol aims to provide guidelines for a refined preclinical mouse model of EHS that is free from major limiting factors such as the use of anesthesia, restraint, rectal probes, or electric shock. Male and female C57Bl/6 mice, instrumented with core temperature (Tc) telemetric probes were utilized in this model. For familiarization with the running mode, mice undergo 3 weeks of training using both voluntary and forced running wheels. Thereafter, mice run on a forced wheel inside a climatic chamber set at 37.5 °C and 40%-50% relative humidity (RH) until displaying symptom limitation (e.g., loss of consciousness) at Tc of 42.1-42.5 °C, although suitable results can be obtained at chamber temperatures between 34.5-39.5 °C and humidity between 30%-90%. Depending on the desired severity, mice are removed from the chamber immediately for recovery in ambient temperature or remain in the heated chamber for a longer duration, inducing a more severe exposure and a higher incidence of mortality. Results are compared with sham-matched exercise controls (EXC) and/or naïve controls (NC). The model mirrors many of the pathophysiological outcomes observed in human EHS, including loss of consciousness, severe hyperthermia, multi-organ damage as well as inflammatory cytokine release, and acute phase responses of the immune system. This model is ideal for hypothesis-driven research to test preventative and therapeutic strategies that may delay the onset of EHS or reduce the multi-organ damage that characterizes this manifestation.

Introduction

Heat stroke is characterized by central nervous system dysfunction and subsequent organ damage in hyperthermic subjects1. There are two manifestations of heatstroke. Classic heat stroke (CHS) affects mostly elderly populations during heat waves or children left in sun-exposed vehicles during hot summer days1. Exertional heat stroke (EHS) occurs when there is an inability to thermoregulate adequately during physical exertion, typically, but not always, under high ambient temperatures resulting in neurological symptoms, hyperthermia, and subsequent multi-organ dysfunction and damage2. EHS occurs in ....

Protocol

All procedures have been reviewed and approved by the University of Florida IACUC. C57BL/6J male or female mice, ~4 months old, weighing within a range of 27-34 g and 20-25 g, respectively, are used for the study.

1. Surgical implantation of the telemetric temperature monitoring system

  1. Upon arrival from the vendor, allow the animals to rest in the vivarium for at least 1 week prior to surgery to minimize the stress of transportation.
  2. Group house the mice (maximum of 5 per.......

Representative Results

The typical thermoregulatory profiles during the entirety of the EHS protocol and early recovery of a mouse is illustrated in Figure 1A. This profile comprises four distinct phases that can be defined as the chamber heating stage, incremental exercise stage, steady-state exercise stage, and a recovery stage by either a rapid cooling (R) or severe (S) method17. The main thermoregulatory outcomes include maximum Tc achieved (Tc,max) and the time required to reach T.......

Discussion

This technical review aims to provide guidelines for the performance of a preclinical model of EHS in mice. Detailed steps and materials required for the execution of a reproducible EHS episode of variable severities are provided. Importantly, the model largely mimics the signs, symptoms, and multi-organ dysfunction observed in human EHS victims11,19. Furthermore, this model allows for the examination of the mechanism underlying short- and long-term EHS recovery<.......

Acknowledgements

This work was funded by the Department of Defense W81XWH-15-2-0038 (TLC) and BA180078 (TLC) and the BK and Betty Stevens Endowment (TLC). JMA was supported by financial aid from the Kingdom of Saudi Arabia. Michelle King was with the University of Florida at the time this study was conducted. She is currently employed by the Gatorade Sports Science Institute, a division of PepsiCo R&D.

....

Materials

NameCompanyCatalog NumberComments
 1080P HD 4 Security Cameras 4CH Home Video Security Camera System w/ 1TB HDD 2MP Night View Cameras CCTV Surveillance KitLaView
5-0 Coated Vicryl Violet BraidedEthicon
5-0 Ethilon Nylon suture Black MonofilamentEthicon
Adhesive Surgical Drape with Povidone 12x18Jorgensen Labset al.
BK Precision Multi-Range Programmable DC Power Supplies Model 9201BK Precision
DR Instruments Medical Student Comprehensive Anatomy Dissection Kit DR Instruments
Energizer Power SupplyStarr Life Sciences
G2 Emitteret al.Starr Life Sciences
Layfayette Motorized Wheel Model #80840BLayfayette
Patterson Veterinary IsofluranePatterson Veterinary
Platform receiveret al.Starr Life Sciences
Scientific Environmental Chamber Model 3911ThermoForma
Training Wheels Columbus Inst.

References

  1. Leon, L. R., Bouchama, A. Heat stroke. Comprehensive Physiology. 5 (2), 611-647 (2015).
  2. Laitano, O., Leon, L. R., Roberts, W. O., Sawka, M. N. Controversies in exertional heat stroke diagnosis, prevention, and treatment. Journal ....

Explore More Articles

Preclinical ModelExertional Heat StrokeMiceTelemetrySurgical ImplantationCore Temperature MonitoringEnvironmental ChamberAnesthesiaBuprenorphineAseptic TechniqueRecovery

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved