A subscription to JoVE is required to view this content. Sign in or start your free trial.
Modification of existing multielectrode array or patch clamp equipment makes the ex vivo electroretinogram more widely accessible. Improved methods to record and maintain ex vivo light responses facilitate the study of photoreceptor and ON-bipolar cell function in the healthy retina, animal models of eye diseases, and human donor retinas.
Measurements of retinal neuronal light responses are critical to investigating the physiology of the healthy retina, determining pathological changes in retinal diseases, and testing therapeutic interventions. The ex vivo electroretinogram (ERG) allows the quantification of contributions from individual cell types in the isolated retina by addition of specific pharmacological agents and evaluation of tissue-intrinsic changes independently of systemic influences. Retinal light responses can be measured using a specialized ex vivo ERG specimen holder and recording setup, modified from existing patch clamp or microelectrode array equipment. Particularly, the study of ON-bipolar cells, but also of photoreceptors, has been hampered by the slow but progressive decline of light responses in the ex vivo ERG over time. Increased perfusion speed and adjustment of the perfusate temperature improve ex vivo retinal function and maximize response amplitude and stability. The ex vivo ERG uniquely allows the study of individual retinal neuronal cell types. In addition, improvements to maximize response amplitudes and stability allow the investigation of light responses in retina samples from large animals, as well as human donor eyes, making the ex vivo ERG a valuable addition to the repertoire of techniques used to investigate retinal function.
Electroretinography measures retinal function in response to light1. It is integral to studying retinal physiology and pathophysiology, and measuring the success of therapies for retinal diseases. The in vivo ERG is widely used to assess retinal function in intact organisms, but it has significant limitations2,3. Amongst these, the quantitative analysis of individual retinal cell types in the in vivo ERG is hampered, since it records the sum of potential changes, and therefore overlaying responses, from all retinal cells to light stimuli4. Furthermore, it does not readily allow addition of drugs to the retina, is vulnerable to systemic influences, and has a relatively low signal-to-noise ratio. These disadvantages are eliminated in the ex vivo ERG that investigates the function of the isolated retina2,3,5,6. The ex vivo ERG allows the recording of large and stable responses from specific retinal cell types by addition of pharmacological inhibitors and easy evaluation of therapeutic agents, which can be added to the superfusate. At the same time, it removes influences of systemic effects and eliminates physiological noise (e.g., heartbeat or breathing).
In the ex vivo ERG, retinas or retinal samples are isolated and mounted photoreceptor-side up on the dome of the specimen holder3,5. The specimen holder is assembled, connected to a perfusion system that supplies the retina with heated, oxygenated media, and placed onto the stage of a microscope, which has been modified to deliver computer-controlled light stimuli. To record the responses elicited by light, the specimen holder is connected to an amplifier, digitizer, and recording system (Figure 1). This technique allows isolation of responses from rod and cone photoreceptors, ON-bipolar cells, and Müller glia by changing the parameters of the light stimuli and adding pharmacological agents.
An existing patch clamp or multi-electrode array (MEA) setup can be converted to record ex vivo ERG, either in conjunction with a commercially available ex vivo ERG adapter or a custom polycarbonate computer numerical control (CNC)-machined specimen holder, to measure light responses in retinas from small animal models, such as mice. This modification increases the accessibility of ex vivo ERG while minimizing the need for specialized equipment. The design of the specimen holder simplifies the mounting technique and integrates electrodes, eliminating the need for manipulation of microelectrodes compared to previously reported transretinal ex vivo ERG methods7. The perfusion rate and temperature inside the specimen holder are important factors that affect the response properties from photoreceptors and ON-bipolar cells. By adjusting these conditions, the ex vivo ERG can be reliably recorded from the isolated mouse retina over prolonged periods of time. Optimized experimental conditions allow ex vivo ERG recordings in retinal punches from larger retinas, including large animal eyes and human donor eyes8.
All experiments using mice were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals and were approved by the Institutional Animal Studies Committee at the University of Utah. Pig eyes for demonstration of this video were obtained postmortem from the slaughterhouse (Sustainable Swine Resources, Johnsonville). Eyes were obtained from human donors after brain or cardiac death with consent for research use through the Utah Lions Eye Bank, the San Diego Eye Bank or Lifesharing, which are fully accredited by the FDA, the Association of Organ Procurement Organizations (AOPO) and the Eye Banks of America Association. The use of human donor eyes had exempt status at the University of Utah (IRB no. 00106658) and ScrippsHealth IRB (IRB no. 16-6781).
1. Setting up the ex vivo ERG
2. Animal preparation
3. Equipment preparation
4. Tissue preparation
5. Mounting the tissue on the specimen holder
6. Recording retinal neuronal cell function
7. Optimizing ON-bipolar cell function
NOTE: The b-wave, which originates from the ON-bipolar cells, is highly sensitive to the temperature in the specimen holder and the perfusion rate.
Ex vivo ERG enables recording of reproducible and stable photoreceptor and ON-bipolar cell light responses, for example, from the mouse retina (Figure 2A-C). Recording of photoreceptor responses from human donor retinas is possible with up to 5 h postmortem delay of enucleation (Figure 2D) and of ON-bipolar cell responses with a <20 min enucleation delay (Figure 2E). Important parameter...
Originally developed in 1865 by Holmgren to measure retinal light responses from the amphibian retina10, technical constraints initially prevented the ERG from being widely used. Nevertheless, seminal studies by Ragnar Granit and others identified the cellular origins of the ERG and measured photoreceptor and ON-bipolar cell responses ex vivo11,12,13. Since then, refined methods have allowed more...
None of the authors has any conflicts of interest to disclose.
This work was supported by National Eye Institute grants EY02665 and EY031706 and International Retinal Research Foundation to Dr. Vinberg, National Institutes of Health Core Grant (EY014800), and an Unrestricted Grant from Research to Prevent Blindness, New York, NY, to the Department of Ophthalmology & Visual Sciences, University of Utah. Dr. Frans Vinberg is also a recipient of a Research to Prevent Blindness/Dr. H. James and Carole Free Career Development Award, and Dr. Silke Becker of an ARVO EyeFind grant. We thank Dr. Anne Hanneken from The Scripps Research Institute for providing the donor eye used for recordings shown in Figure 2E.
Name | Company | Catalog Number | Comments |
2 mm socket | WPI | 2026-10 | materials to prepare electrode |
Ag/AgCl Electrode | World Precision Instruments | EP1 | materials to prepare electrode |
Ames' medium | Sigma Aldrich | A1420 | perfusion media |
barium chloride | Sigma Aldrich | B0750 | potassium channel blocker |
DL-AP4 | Tocris | 0101 | broad spectrum glutamatergic antagonist |
OcuScience Ex Vivo ERG Adapter | OcuScience | n/a | ex vivo ERG specimen holder |
Threaded luer connector | McMaster-Carr | 51525K222 or 51525K223 | materials to prepare electrode |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved