Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, an experimental workflow is presented that enables the detection of caspase-8 processing directly at the death-inducing signaling complex (DISC) and determines the composition of this complex. This methodology has broad applications, from unraveling the molecular mechanisms of cell death pathways to the dynamic modeling of apoptosis networks.

Abstract

Extrinsic apoptosis is mediated by the activation of death receptors (DRs) such as CD95/Fas/APO-1 or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-receptor 1/receptor 2 (TRAIL-R1/R2). Stimulation of these receptors with their cognate ligands leads to the assembly of the death-inducing signaling complex (DISC). DISC comprises DR, the adaptor protein Fas-associated protein with death domain (FADD), procaspases-8/-10, and cellular FADD-like interleukin (IL)-1β-converting enzyme-inhibitory proteins (c-FLIPs). The DISC serves as a platform for procaspase-8 processing and activation. The latter occurs via its dimerization/oligomerization in the death effector domain (DED) filaments assembled at the DISC.

Activation of procaspase-8 is followed by its processing, which occurs in several steps. In this work, an established experimental workflow is described that allows the measurement of DISC formation and the processing of procaspase-8 in this complex. The workflow is based on immunoprecipitation techniques supported by western blot analysis. This workflow allows careful monitoring of different steps of procaspase-8 recruitment to the DISC and its processing and is highly relevant for investigating molecular mechanisms of extrinsic apoptosis.

Introduction

One of the best-studied death receptors (DRs) is CD95 (Fas, APO-1). The extrinsic apoptotic pathway starts with the interaction of the DR with its cognate ligand, i.e., CD95L interacts with CD95 or TRAIL binds to TRAIL-Rs. This results in the formation of the DISC at the corresponding DR. DISC consists of CD95, FADD, procaspase-8/-10, and c-FLIP proteins1,2. Furthermore, the DISC is assembled by interactions between death domain (DD)-containing proteins, such as CD95 and FADD, and DED-containing proteins such as FADD, procaspase-8/-10, and c-FLIP (Figure 1). Procaspase-8 ....

Protocol

​T cell experiments were performed according to the ethical agreement 42502-2-1273 Uni MD.

1. Preparing cells for the experiment

NOTE: The average number of cells for this immunoprecipitation is 1 × 107. Adherent cells have to be seeded one day before the experiment so that there are 1 × 107 cells on the day of the experiment.

  1. Preparing adherent cells for the experiment
    1. Seed 5-8 × 10<.......

Representative Results

To analyze caspase-8 recruitment to the DISC and its processing at the CD95 DISC, this paper describes a classical workflow, which combines IP of the CD95 DISC with western blot analysis. This allows the detection of several key features of caspase-8 activation at the DISC: the assembly of the caspase-8-activating macromolecular platform, recruitment of procaspase-8 to the DISC, and the processing of this initiator caspase (Figure 1 and Figure 2). This workflow .......

Discussion

This approach was first described by Kischkel et al.27 and has successfully been developed since then by several groups. Several important issues have to be considered for efficient DISC-immunoprecipitation and monitoring caspase-8 processing in this complex.

First, it is essential to follow all washing steps during immunoprecipitation. Especially important are the final washing steps of the sepharose beads and the drying of the sepharose beads. This must be done correc.......

Acknowledgements

We acknowledge the Wilhelm Sander-Foundation (2017.008.02), the Center of Dynamic Systems (CDS), funded by the EU-program ERDF (European Regional Development Fund) and the DFG (LA 2386) for supporting our work. We thank Karina Guttek for supporting our experiments. We acknowledge Prof. Dirk Reinhold (OvGU, Magdeburg) for providing us primary T cells.

....

Materials

NameCompanyCatalog NumberComments
12.5% SDS gelself madefor two separating gels:
3.28 mL distilled H2O
2.5 mL Tris; pH 8.8; 1.5 M
4.06 mL acrylamide
100 µL 10% SDS
100 µL 10% APS
7.5 µL TEMED

for two collecting gels:
3.1 mL distilled H2O
1.25 mL Tris; pH 6.8; 1.5 M
0.5 mL acrylamide
50 µL 10% SDS
25 µL 10% APS
7.5 µL TEMED
14.5 cm cell dishesGreiner639160
acrylamideCarl RothA124.1
anti-actin AbSigma AldrichA2103dilution: 1:4000 in PBST + 1:100 NaN3
anti-APO-1 Abprovided in these experiments by Prof. P. Krammer or can be purchased by EnzoALX-805-038-C100used only for immunoprecipitation
anti-caspase-10 AbBiozolMBL-M059-3dilution: 1:1000 in PBST + 1:100 NaN3
anti-caspase-3 Abcell signaling9662 Sdilution: 1:2000 in PBST + 1:100 NaN3
anti-caspase-8 Ab C15provided in these experiments by Prof. P. Krammer or can be purchased by ENZOALX-804-242-C100dilution: 1:20 in PBST + 1:100 NaN3
anti-CD95 AbSanta Cruzsc-715dilution: 1:2000 in PBST + 1:100 NaN3
anti-c-FLIP NF6 Abprovided in these experiments by Prof. P. Krammer or can be purchased by ENZOALX-804-961-0100dilution: 1:10 in PBST + 1:100 NaN3
anti-FADD 1C4 Abprovided in these experiments by Prof. P. Krammer or can be purchased by ENZOADI-AAM-212-Edilution: 1:10 in PBST + 1:100 NaN3
anti-PARP Abcell signaling9542dilution: 1:1000 in PBST + 1:100 NaN3
APSCarl Roth9592.3
β-mercaptoethanolCarl Roth4227.2
Bradford solution
Protein Assay Dye Reagent Concentrate 450ml
Bio Rad500-0006used according to manufacturer's instructions
CD95Lprovided in these experiments by Prof. P. Krammer or can be purchased by ENZOALX-522-020-C005
chemoluminescence detector
Chem Doc XRS+
Bio Rad
cOmplete Protese Inhibitor Cocktail (PIC)Sigma Aldrich11 836 145 001prepared according to manufacturer's instructions
DPBS (10x) w/o Ca, MgPAN BiotechP04-53500dilution 1:10 with H2O, storage in the fridge
eletrophoresis bufferself made10x electrophoresis buffer:
60.6 g Tris
288 g glycine
20 g SDS
ad 2 L H2O
1:10 dilution before usage
glycineCarl Roth3908.3
Goat Anti-Mouse IgG1 HRPSouthernBiotech1070-05dilution 1:10.000 in PBST + 5% milk
Goat Anti-Mouse IgG2bSouthernBiotech1090-05dilution 1:10.000 in PBST + 5% milk
Goat Anti-Rabbit IgG-HRPSouthernBiotech4030-05dilution 1:10.000 in PBST + 5% milk
Interleukin-2 Human(hIL-2)Merckgroup/ Roche11011456001for activation of T cells
KClCarl Roth6781.2
KH2PO4Carl Roth3904.1
loading buffer
4x Laemmli Sample Buffer,10 mL
Bio Rad161-0747prepared according to manufacturer's instructions
Luminata Forte Western HRP substrateMilliporeWBLUFO500
lysis bufferself made13.3 mL Tris-HCl; pH 7.4; 1.5 M
27.5 mL NaCl; 5 M
10 mL EDTA; 2 mM
100 mL Triton X-100
add 960 mL H2O
medium for adhaerent cells DMEM F12 (1:1) w stable Glutamine,  2,438 g/LPAN BiotechP04-41154adding 10% FCS, 1% Penicillin-Streptomycin and 0.0001% Puromycin to the medium
medium for primary T cellsgibco by Life Technologie21875034adding 10% FCS and 1% Penicillin-Streptomycin to the medium
milk powderCarl RothT145.4
Na2HPO4Carl RothP030.3
NaClCarl Roth3957.2
PBSTself made20x PBST:
230 g NaCl
8 g KCl
56.8 g Na2HPO4
8 g KH2PO4
20 mL Tween-20
ad 2 L H2O
dilution 1:20 before usage
PBST + 5% milkself made50 g milk powder + 1 L PBST
PHAThermo Fisher ScientificR30852801for actavation of T ells
Power Pac HCBio Rad
Precision Plus Protein Standard All BlueBio Rad161-0373use between 3-5 µL
Protein A Sepharose CL-4B beadsNovodirect/ Th.GeyerGE 17-0780-01affinity resin beads prepared according to manufacturer's instructions
scraperVWR734-2602
SDSCarl Roth4360.2
shakerHeidolph
sodium azideCarl RothK305.1
TEMEDCarl Roth2367.3
Trans Blot Turbo mini-size transfer stacksBio Rad170-4270used according to manufacturer's instructions
TransBlot Turbo 5x Transfer BufferBio Rad10026938prepared according to manufacturer's instructions
TransBlot Turbo Mini-size nictrocellulose membraneBio Rad170-4270used according to manufacturer's instructions
Trans-Blot-TurboBio Rad
TrisChem Solute8,08,51,000
Triton X-100Carl Roth3051.4
Tween-20Pan Reac Appli ChemA4974,1000

References

  1. Lavrik, I. N., Krammer, P. H. Regulation of CD95/Fas signaling at the DISC. Cell Death and Differentiation. 19 (1), 36-41 (2012).
  2. Krammer, P. H., Arnold, R., Lavrik, I. N. Life and death in peripheral T cells. Nature Reviews Immunology<....

Explore More Articles

CD95DISCApoptosisCaspase 8ImmunoprecipitationCell LysisProtein Concentration

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved