Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol describes the preparation of cell membrane affinity chromatography (CMAC) columns with immobilized cell membrane fragments containing functional transmembrane tropomyosin kinase receptor B proteins. The use of CMAC columns in the identification of specialized plant metabolites interacting with these receptors and present in complex natural mixtures is also explained.

Abstract

Chemicals synthesized by plants, fungi, bacteria, and marine invertebrates have been a rich source of new drug hits and leads. Medicines such as statins, penicillin, paclitaxel, rapamycin, or artemisinin, commonly used in medical practice, have been first identified and isolated from natural products. However, the identification and isolation of biologically active specialized metabolites from natural sources is a challenging and time-consuming process. Traditionally, individual metabolites are isolated and purified from complex mixtures, following the extraction of biomass. Subsequently, the isolated molecules are tested in functional assays to verify their biological activity. Here we present the use of cellular membrane affinity chromatography (CMAC) columns to identify biologically active compounds directly from complex mixtures. CMAC columns allow for the identification of compounds interacting with immobilized functional transmembrane proteins (TMPs) embedded in their native phospholipid bilayer environment. This is a targeted approach, which requires knowing the TMP whose activity one intends to modulate with the newly identified small molecule drug candidate. In this protocol, we present an approach to prepare CMAC columns with immobilized tropomyosin kinase receptor B (TrkB), which has emerged as a viable target for drug discovery for numerous nervous system disorders. In this article, we provide a detailed protocol to assemble the CMAC column with immobilized TrkB receptors using neuroblastoma cell lines overexpressing TrkB receptors. We further present the approach to investigate the functionality of the column and its use in the identification of specialized plant metabolites interacting with TrkB receptors.

Introduction

Botanical mixtures are rich in pharmacologically active compounds1, serving as a good source for the identification of new drug hits and leads2,3,4,5. The discovery of new medicines from natural products has been a fruitful approach and many currently approved drugs originated from compounds first identified in nature. The chemical diversity of natural compounds is hard to be matched by man-made libraries of chemically synthesized molecules. Many natural compounds interact with and modulate human protein targets ....

Protocol

1. Cell culture of SH-SY5Y neuroblastoma cells (TrkB and TrkB-NULL (parental) cell lines)

NOTE: Cell lines (SH-SY5Y Cell Line (TrkB, BR6) and SH-SY5Y Parental Cell Line (TrkB NULL))49,50 were purchased from Kerafast. Cultured cells are used as a source of the transmembrane receptors to be immobilized for the preparation of CMAC columns. The following steps describe how to obtain cell membrane fragments and assemble funct.......

Representative Results

Following the protocol, two CMAC chromatographic columns were assembled: one with the immobilized SH-SY5Y neuroblastoma cell membrane fragments with overexpressed TrkB and one with SH-SY5Y TrkB-NULL cell membrane fragments. The correctly assembled CMAC column is presented in Figure 1 and the steps involved in cell membrane fragment immobilization are presented in Figure 2.

Since the immobilization of TrkB receptors on IAM.PC.DD2 chrom.......

Discussion

Identification of active compounds present in complex mixtures of specialized metabolites is a very challenging task23. Traditionally, individual compounds are isolated, and their activity is tested in different assays. This approach is time-consuming and costly and often leads to isolation and identification of the most abundant and well-characterized compounds23. Currently used high-throughput screening assays rely heavily on screening combinatorial chemistry librari.......

Acknowledgements

Z.C.A. was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) 2219- International Postdoctoral Research Fellowship Program. Research reported in this publication was supported by the National Center for Complimentary and Integrative Medicine of the National Institutes of Health under award number 1R41AT011716-01. This work was also partially supported by American Society of Pharmacognosy Research Starter Grant, Regis Technologies grant to L.C. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

....

Materials

NameCompanyCatalog NumberComments
7-8 Dihydroxyflavone hydrateSigma-AldrichD5446-10 mg≥98% (HPLC)
Adenosine 5'-triphosphate (ATP) disodium salt hydrateSigma-AldrichA2383-1 g
Ammonium acetateVWR Chemicals BDHBDH9204-500 g
BDNF antibodyInvitrogenPA5-15198-400 μLPrimary antibody; 2 mg/mL of concentration
Benzamidine hydrochloride hydrateSigma-AldrichB6506-25 g
Brain derived neurotrophic factor (BDNF) humanSigma-AldrichB3795-10 μgRecombinant, expressed in E. coli, lyophilized powder, suitable for cell culture
Calcium chlorideVWR AnalyticalBDH9224-1 kg
Cholic acid sodium saltAlfa AesarJ62050-100 g
Dounce homogenizerVWR71000-51640 mL, 285 mm (overall lenght), 32 x 140 mm (O.D. x H)
EthanolSigma-Aldrich493511
Ethylenediaminetetraacetic acid (EDTA)VWR AnalyticalBDH-9232-500 g
Fetal bovine serumSigma-AldrichF2442-500 mLsterile-filtered, suitable for cell culture
G418 disulfate salt solutionSigma-AldrichG8168-100 mL50 mg/mL in H2O, 0.1 μm filtered, suitable for cell culture
GlycerolVWR Life ScienceE520-100 mL
Immobilized artificial membrane (IAM.PC.DD2)Regis Technologies, Inc.1-771050-500
Magnesium chloride hexahydrateVWR AnalyticalBDH9244-500 mL
MethanolSigma-Aldrich322425
Nikon Plan FluorNikonConfocal laser scanning microscope
Normal goat serum (10%)Life Technologies50197Z
Penicillin-StreptomycinSigma-AldrichP4333-100 mL
Phenylmethanesulfonyl fluoride (PMSF)Thermo Scientific36978-5 g
Phosphate buffered saline (PBS)VWR Life ScienceK812-500 mL1x
Potassium chlorideVWR Chemicals BDH0395-1 kg
Protease inhibitor cocktailVWR Life Science AmbresoM221-1 mLProteomics grade, containing 50 mM AEBSF, 30 µM aprotonin, 1 mM bestatin, 1 mM E-64 and 1 mM leupeptin
RPMI-1640 mediumSigma-AldrichR8758-500 mLwith L-glutamine and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Secondary antibody goat anti-rabbit IgG (H+L)Invitrogen Alexa Flour Plus 488A32731
SH-SY5Y Neuroblastoma cell lines expressing Trk-BKerafastECP007
SH-SY5Y Trk-NULL cell lineKerafastECP005
Snake skin dialysis tubingThermo Scientific8824510K MWCO, 35 mm dry I.D.
Sodium azideSigma-AldrichS2002
Sodium chlorideBDH VWR AnalyticalBDH9286-2.5 kg
Tricorn 5/20 columnGE Healthcare24-4064-08
Tris-HClVWR Life Science0497-1 kg
Trypsin-EDTA solutionSigma-AldrichT4049-500 mL0.25%, sterile-filtered, suitable for cell culture, 2.5 g porcine trypsin and 0.2 g EDTA

References

  1. Thomford, N. E., et al. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Drug Discovery. International Journal of Molecular Sciences. 19 (6), 1578 (2018).
  2. Atanasov, A. G., Zotchev, S. B., Dirsch, V. M.

Explore More Articles

Cellular Membrane Affinity ChromatographyTransmembrane ReceptorsPlant MetabolitesTropomyosin Kinase ReceptorBenzamidinePMSFProtease InhibitorATPTris HCl BufferHomogenization BufferCell HarvestingCell LysisColumn Preparation

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved