A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Optogenetic control of microbial metabolism offers flexible dynamic control over fermentation processes. The protocol here shows how to set up blue light-regulated fermentations for chemical and protein production at different volumetric scales.
Microbial cell factories offer a sustainable alternative for producing chemicals and recombinant proteins from renewable feedstocks. However, overburdening a microorganism with genetic modifications can reduce host fitness and productivity. This problem can be overcome by using dynamic control: inducible expression of enzymes and pathways, typically using chemical- or nutrient-based additives, to balance cellular growth and production. Optogenetics offers a non-invasive, highly tunable, and reversible method of dynamically regulating gene expression. Here, we describe how to set up light-controlled fermentations of engineered Escherichia coli and Saccharomyces cerevisiae for the production of chemicals or recombinant proteins. We discuss how to apply light at selected times and dosages to decouple microbial growth and production for improved fermentation control and productivity, as well as the key optimization considerations for best results. Additionally, we describe how to implement light controls for lab-scale bioreactor experiments. These protocols facilitate the adoption of optogenetic controls in engineered microorganisms for improved fermentation performance.
Optogenetics, the control of biological processes with light-responsive proteins, offers a new strategy to dynamically control microbial fermentations for chemical and protein production1,2. The burden of engineered metabolic pathways and the toxicity of some intermediates and products often impairs cell growth3. Such stresses can lead to poor biomass accumulation and reduced productivity3. This challenge can be addressed by temporally dividing fermentations into a growth and production phase, which devote metabolic resources to biomass accumulation or product sy....
1. Light-controlled chemical production using the S. cerevisiae OptoINVRT7 circuit
Optogenetic regulation of microbial metabolism has been successfully implemented to produce a variety of products, including biofuels, bulk chemicals, proteins, and natural products5,6,7,12,13. Most of these processes are designed for cell growth to occur in the light (when low cell density poses minimal challenges with light penetration), and for production t.......
Dynamic control has long been applied to improve yields for metabolic engineering and recombinant protein production4. Shifts in enzymatic expression are most typically implemented using chemical inducers such as IPTG21, galactose22, and tetracycline23, but have also been mediated using process conditions such as temperature and pH. Optogenetic control of gene expression eliminates the need for changes to fermentation paramete.......
The authors have applied for several patents for the optogenetic circuits and methods described in this article.
This research was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Award Number DE-SC0019363, the NSF CAREER Award CBET-1751840, The Pew Charitable Trusts, and the Camille Dreyfus Teacher-Scholar Award.
....Name | Company | Catalog Number | Comments |
Light-controlled chemical production using S. cerevisiae | |||
24-well culture plate | USA Scientific | CC7672-7524 | |
Agar powder | Thermo Fisher Scientific | 303991049 | |
Aluminum foil | Reynolds | B004NG90YO | |
BioSpectrometer with μcuvette | Eppendorf | 6135000923 | |
Blue LED panel | HQRP | 884667106091218 | |
EZ-L439 OptoINVRT7 Plasmid | N/A | N/A | See Reference 1 |
Glucose | Thermo Fisher Scientific | 501879892 (G8270-5KG) | |
Microcentrifuge | Thermo Fisher Scientific | 75002403 | |
Microcentrifuge tubes | USA Scientific | 1615-5510 | |
Orbital Shaker | Yamato Scientific America | SOU-300 | |
Petri dish | Celltreat | 229656 | |
PmeI | New England Biolabs | R0560L | |
Quantum meter | Apogee Instruments | MQ-510 | |
Replica-plating device | Thomas Scientific | F37848-0000 | |
Replica-plating pads | Sunrise Science Products | 3005-012 | |
SC-His powder | Sunrise Science Products | 1303-030 | |
SC Complete powder | Sunrise Science Products | 1459-100 | |
Sterile sealing film | Excel Scientific | STR-SEAL-PLT | |
YPD agar plates | VWR | 100217-054 | |
Zeocin | Thermo Fisher Scientific | R25005 | |
Light-controlled protein production using E. coli | |||
6X SDS Sample Buffer | Cepham Life Sciences | 10502 | |
12% Acrylamide protein gels | Thermo Fisher Scientific | NP0341BOX | |
24-well culture plate | USA Scientific | CC7672-7524 | |
Aluminum foil | Reynolds | B004NG90YO | |
BioSpectrometer with μcuvette | Eppendorf | 6135000923 | |
Blue LED panel | HQRP | 884667106091218 | |
Coomassie Brilliant Blue G-250 | Thermo Fisher Scientific | 20279 | |
Electrophoresis cell | Bio-Rad | 1658004 | |
Electrophoresis power supply | Bio-Rad | 1645050 | |
LB broth (Miller) | Fisher Scientific | BP97235 | |
Microcentrifuge | Thermo Fisher Scientific | 75002403 | |
Microcentrifuge tubes | USA Scientific | 1615-5510 | |
NaCl | Thomas Scientific | SX0425-1 | |
OptoLAC plasmids | N/A | N/A | See Reference 2 |
Orbital Shaker | Yamato Scientific America | SOU-300 | |
Petri dish | Celltreat | 229656 | |
Quantum meter | Apogee Instruments | MQ-510 | |
SOC medium | Thermo Fisher Scientific | 15544034 | |
Thermomixer | Eppendorf | 5382000015 | |
Tris base | Fisher Scientific | BP1521 | |
Three-phase fermentation using S. cerevisiae | |||
Same materials as "Light-controlled chemical production using S. cerevisiae" protocol plus the following: | |||
EZ-L580 OptoAMP4 Plasmid | N/A | N/A | See Reference 10 |
Chemical production in a light-controlled bioreactor | |||
Aluminum foil | Reynolds | B004NG90YO | |
Antifoam | Sigma-Aldrich | A8311 | |
Bioreactor with control station | Eppendorf | B120110001 | |
BioSpectrometer with μcuvette | Eppendorf | 6135000923 | |
Bleach | VWR Scientific | 89501-620 (CS) | |
Blue LED panel | HQRP | 884667106091218 | |
BPT tubing | Fisher Scientific | 14-170-15 | |
Glucose | Thermo Fisher Scientific | 501879892 (G8270-5KG) | |
Hydrochloric acid (HCl) | Fisher Scientific | 7647-01-0 | |
M9 Minimal Salts | Thermo Fisher Scientific | A1374401 | |
Microcentrifuge | Thermo Fisher Scientific | 75002403 | |
Microcentrifuge tubes | USA Scientific | 1615-5510 | |
NH4OH Solution | Sigma-Aldrich | I0503-1VL | |
Orbital Shaker | Yamato Scientific America | SOU-300 | |
Quantum meter | Apogee Instruments | MQ-510 | |
SC Complete powder | Sunrise Science Products | 1459-100 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved