A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The protocol describes the evaluation of various electrochemical properties of supercapacitors using a three-electrode system with a potentiostat device.

Abstract

The three-electrode system is a basic and general analytical platform for investigating the electrochemical performance and characteristics of energy storage systems at the material level. Supercapacitors are one of the most important emergent energy storage systems developed in the past decade. Here, the electrochemical performance of a supercapacitor was evaluated using a three-electrode system with a potentiostat device. The three-electrode system consisted of a working electrode (WE), reference electrode (RE), and counter electrode (CE). The WE is the electrode where the potential is controlled and the current is measured, and it is the target of research. The RE acts as a reference for measuring and controlling the potential of the system, and the CE is used to complete the closed circuit to enable electrochemical measurements. This system provides accurate analytical results for evaluating electrochemical parameters such as the specific capacitance, stability, and impedance through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Several experimental design protocols are proposed by controlling the parameter values of the sequence when using a three-electrode system with a potentiostat device to evaluate the electrochemical performance of supercapacitors. Through these protocols, the researcher can set up a three-electrode system to obtain reasonable electrochemical results for assessing the performance of supercapacitors.

Introduction

Supercapacitors have attracted enormous attention as suitable power sources for a variety of applications such as microelectronic devices, electric vehicles (EVs), and stationary energy storage systems. In EV applications, supercapacitors can be used for rapid acceleration and can enable the storage of regenerative energy during the deceleration and braking processes. In renewable energy fields, such as solar power generation1 and wind power generation2, supercapacitors can be used as stationary energy storage systems3,4. Renewable energy generation is limited by the fluctuating and intermittent nature of these energy supplies; therefore, an energy storage system that can respond immediately during irregular power generation is required5. Supercapacitors, which store energy via mechanisms that differ from those of lithium-ion batteries, exhibit a high power density, stable cycle performance, and fast charging-discharging6. Depending on the storage mechanism, supercapacitors can be distinguished into double-layer capacitors (EDLCs) and pseudocapacitors7. EDLCs accumulate electrostatic charge at the electrode surface. Therefore, the capacitance is determined by the amount of charge, which is affected by the surface area and porous structure of the electrode materials. By contrast, pseudocapacitors, which consist of conducting polymers and metal oxide materials, store charge through a Faradaic reaction process. The various electrochemical properties of supercapacitors are related to the electrode materials, and developing new electrode materials is the main issue in improving the performance of supercapacitors8. Hence, evaluating the electrochemical properties of these new materials or systems is important in the progress of research and further applications in real life. In this regard, electrochemical evaluation using a three-electrode system is the most basic and widely utilized method in lab-scale research of energy storage systems9,10,11,12,13.

The three-electrode system is a simple and reliable approach for evaluating the electrochemical properties, such as the specific capacitance, resistance, conductivity, and cycle life of supercapacitors14. The system offers the benefit of enabling analysis of the electrochemical characteristics of single materials15, which is in contrast to the two-electrode system, where the characteristics can be studied through the analysis of the given material. The two-electrode system just gives information about the reaction between two electrodes. It is suitable for analyzing the electrochemical properties of the entire energy storage system. The potential of the electrode is not fixed. Therefore, it is not known at what voltage the reaction takes place. However, three-electrode system analyzes only one electrode with fixing potential which can perform a detailed analysis of the single electrode. Therefore, the system is targeted toward analyzing the specific performance at the material level. The three-electrode system consists of a working electrode (WE), reference electrode (RE), and counter electrode (CE)16,17. The WE is the target of research, assessment as it performs the electrochemical reaction of interest18 and is composed of a redox material that is of potential interest. In the case of EDLCs, utilizing high surface area materials is the main issue. Therefore, porous materials with a high surface area and micropores, such as porous carbon, graphene, and nanotubes, are preferred19,20. Activated carbon is the most common material for EDLCs because of its high specific area (>1000 m2/g) and many micropores. Pseudocapacitors are fabricated with materials that can undergo a Faradaic reaction21. Metal oxides (RuOx, MnOx, etc.) and conducting polymers (PANI, PPy, etc.) are commonly used22. The RE and CE are used to analyze the electrochemical properties of the WE. The RE serves as a reference for measuring and controlling the potential of the system; the normal hydrogen electrode (NHE) and Ag/AgCl (saturated KCl) are generally chosen as the RE23. The CE is paired with the WE and completes the electrical circuit to allow charge transfer. For the CE, electrochemically inert materials are used, such as platinum (Pt) and gold (Au)24. All components of the three-electrode system are connected to a potentiostat device, which controls the potential of the entire circuit.

Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) are typical analytical methods that use a three-electrode system. Various electrochemical characteristics of supercapacitors can be assessed using these methods. CV is the basic electrochemical method used to investigate the electrochemical behavior (electron transfer coefficient, reversible or irreversible, etc.) and capacitive properties of material during repeated redox processes14,24. The CV plot shows redox peaks related to the reduction and oxidation of the material. Through this information, researchers can evaluate the electrode performance and determine the potential where the material is reduced and oxidized. Furthermore, through CV analysis, it is possible to determine the amount of charge that material or electrode can store. The total charge is a function of the potential, and the capacitance can be easily calculated6,18. Capacitance is the main issue in supercapacitors. A higher capacitance represents the ability to store more charge. EDLCs give rise to rectangular CV patterns with linear lines so that the capacitance of the electrode can be calculated easily. Pseudocapacitors present redox peaks in rectangular plots. Based on this information, researchers can assess the electrochemical properties of materials using CV measurements18.

GCD is a commonly employed method for identifying the cycle stability of an electrode. For long-term use, the cycle stability should be verified at a constant current density. Each cycle consists of charge-discharge steps14. Researchers can determine the cycle stability through variations in the charge-discharge graph, specific capacitance retention, and Coulombic efficiency. EDLCs give rise to a linear pattern; thus, the specific capacitance of the electrode can be calculated easily using the slope of the discharge curve6. However, pseudocapacitors exhibit a nonlinear pattern. The discharge slope varies during the discharging process7. Furthermore, the internal resistance can be analyzed through the current-resistance (IR) drop, which is the potential drop owing to the resistance6,25.

EIS is a useful method for identifying the impedance of energy storage systems without destruction of the sample26. The impedance can be calculated by applying a sinusoidal voltage and determining the phase angle14. The impedance is also a function of the frequency. Therefore, the EIS spectrum is acquired over a range of frequencies. At high frequencies, kinetic factors such as the internal resistance and charge transfer are operative24,27. At low frequencies, the diffusion factor and Warburg impedance can be detected, which are related to mass transfer and thermodynamics24,27. EIS is a powerful tool for analyzing the kinetic and thermodynamic properties of a material at the same time28. This study describes the analysis protocols for evaluating the electrochemical performance of supercapacitors using a three-electrode system.

Protocol

1. Fabrication of electrode and supercapacitor (Figure 1)

  1. Prepare the electrodes prior to the electrochemical analysis by combining 80 weight (wt)% of the electrode active material (0.8 g activated carbon), 10 wt% of the conductive material (0.1 g carbon black), and 10 wt% of the binder (0.1 g polytetrafluoroethylene (PTFE)).
    1. Drop isopropanol (IPA; 0.1-0.2 mL) into the above-mentioned mixture, then spread the mixture thinly into a dough with a roller.
  2. Before attaching the electrode to stainless steel (SUS) mesh, cut the SUS mesh to dimensions of 1.5 cm (width) × 5 cm (length). After weighing the SUS mesh, coat the electrode (1 cm2) with a thickness of 0.1-0.2 mm on a SUS mesh and compress it with an electrode pressing machine. Here, the mass range of the electrode was 0.001-0.003 g.
  3. Dry the assembled supercapacitor electrode in an oven at 80 °C for about 1 day to evaporate the IPA.
  4. Weigh the SUS mesh to obtain the weight of the electrode and then immerse the mesh in the electrolyte (2 M H2SO4 aqueous solution).
  5. Place the SUS mesh in a desiccator to remove air bubbles at the surface of the supercapacitor electrode.

2. Preparation of sequence file for electrochemical analysis

  1. CV sequence settings to obtain the analysis results.
    1. Run the potentiostat measurement program to set the measurement experiment sequence file (Figure 2A).
    2. Click the Experiment button in the toolbar and go to Sequence File Editor > New or click the New Sequence button (Figure 2B). Click the Add button to add a sequence step (Figure 3A).
    3. In every step, set Control as Sweep, Configuration as PSTAT, Mode as CYCLIC, and Range as Auto. Set the Reference for Initial(V) and Middle(V) as Eref and put -200e-3 in the Value. Set the Reference for Final(V) as Eref and put 800e-3 in the Value.
    4. The voltage scan rate is set as the desired value by the user. Here, the scan rate was set to 10 mV/s. Put the value in Scanrate(V/s) as 10.0000e-3. Copy step-1 and click Paste[Dn] to paste it to step-2~5. Change the value of Scanrate(V/s) to either 20.000e-3, 30.000e-3, 50.000e-3, and 100.00e-3 respectively.
    5. Set Quiet time(s) as 0 and Segments as the number 2n+1 where n is the number of cycles. Here, 21 was applied for 10 cycles.
    6. Set Cut Off Condition as follows: for Condition-1 set Item as Step End and Go Next as Next.
    7. In the Controlling Miscellaneous Setting section, in the Sampling tab, set Item as Times(s), OP as >=, and DeltaValue as 0.333333 (step-1), 0.166666 (step-2), 0.111111 (step-3), 0.06667 (step-4), and 0.03333 (step-5) for each scan rate. This is the time interval for recording the data.
    8. Click Save As to save the CV analysis sequence file in any folder of the computer.
  2. GCD sequence settings to obtain the analysis results
    1. Run the potentiostat measurement program to set the measurement experiment sequence file (Figure 2A).
    2. Click the Experiment button in the toolbar and go to Sequence File Editor > New or click the New Sequence button (Figure 2B). Click the Add button to add a sequence step (Figure 4A,B).
    3. In Step-1, set Control as CONSTANT, Configuration as GSTAT, Mode as NORMAL, and Range as Auto. Set the Reference for Current(A) as ZERO. When the mass of the electrode is 0.00235 g, set Value as 1.8618e-3 which means the current density is 1 A/g.
    4. Set Cut Off Condition as follow: for Condition-1 set Item as Voltage, OP as >=, DeltaValue as 800e-3, and Go Next as Next.
    5. Set the following in the Controlling Miscellaneous setting section: in the Sampling tab, set Item as Times(s), OP as >=, and DeltaValue as 0.1.
    6. In Step-2, each set is the same as in Step-1, except set value of Current(A) as the negative value of Step-1 (-1.8618e-3). Set Condition-1 as follows: Item as Voltage, OP as <=, DeltaValue as -200e-3, and Go Next as Next.
    7. In Step-3, set Control as LOOP, Configuration as CYCLE, and set List-1 in Condition-1 of Cut Off Condition as Loop Next, Go Next as Step-1, and set List-2 as Step End, and Go Next as Next. Set the Iteration value as 10 which is the number of repeating cycles.
    8. Step-1, step-2, and step-3 form a single loop. Copy and paste them after step-4 and change the value of Current (A) to either 3.7236e-3, 5.5855e-3, 9.3091e-3, or 18.618e-3, calculated for various current densities of 2,3,5, and 10 A/g.
    9. Click Save As to save the GCD analysis sequence file in any folder of the computer.
  3. EIS sequence settings to obtain the analysis results
    1. Run the potentiostat measurement program to set the measurement experiment sequence file (Figure 2A).
    2. Click the Experiment button in the toolbar and go to Sequence File Editor > New or click the New Sequence button (Figure 2B). Click the Add button to add a sequence step (Figure 5A,B).
    3. In Step-1, set Control as CONSTANT, Configuration as PSTAT, Mode as TIMER STOP, and Range as Auto. Set the Reference for Voltage(V) as Eref and Value as 500e-3 which is half of the size of the voltage range.
    4. Set cut-off condition as follows: for Condition-1 set Item as Step Time, OP as >=, DeltaValue as 3:00, and Go Next as Next. This is the process for stabilizing the potentiostat device.
    5. In Step-2, set Control as EIS, Configuration as PSTAT, Mode as LOG, and Range as Auto. Set Speed of Initial (Hz) as Normal and value of Initial (Hz) and Middle (Hz) as 1.0000e+6 which is the high-frequency value and Final (Hz) as 10.000e-6, which is the low-frequency value.
    6. Set the Reference for Bias(V) as Eref and Value as 500e-3. To get a linear response result, set the amplitude (Vrms) as 10.000e-3. Set Density as 10 and Iteration as 1.
    7. Click Save as to save the EIS analysis sequence file in any folder of the computer.

3. Electrochemical analysis

  1. Operate the potentiostat device and run the measurement program to perform the CV, GCD, and EIS analyses. Fill 100 mL of 2 M H2SO4 aqueous electrolyte in a glass container (a beaker-shaped glass container was used).
  2. Before starting the measurement, in the potentiostat, connect the three types of lines: the working electrode (L-WE), the reference electrode (L-RE), and the counter electrode (L-CE), to the SUS mesh, reference electrode (Ag/AgCl), and counter electrode (Pt wire), respectively (Figure 6). Connect the fourth line, the working sensor (L-WS) to the L-WE.
  3. Cover the glass container with a cap, and immerse the three electrodes in the electrolyte through a perforation in the cap. Position the electrodes so that the WE is maintained at a constant distance between the CE and RE.
  4. Run the measurement program and open the prepared sequence. Click Apply to CH to insert the sequence to the potentiostat's channel. Start the measurement by clicking the Start button.

4. Data analysis

  1. CV data analysis for fitting the graph
    1. Open raw measurement data in the convert program to obtain the results in spreadsheet format. Click the File button and open the raw data. Select all cycles and click Export ASCII on the toolbar. Check the Cycle, Voltage, and Current in Columns to Export on the right side of the program.
    2. Click Create Directory and then click Export to convert raw data to spreadsheet format.
    3. Open the spreadsheet file and extract the voltage and current values of cycles 10, 20, 30, 40, and 50, which are the last cycles at each scan rate.
    4. Plot the CV graph with the voltage as the X-axis and specific current density as the Y-axis.
  2. GCD data analysis for fitting the graph
    1. Open raw measurement data in the convert program to obtain the results in spreadsheet format. Click the File button and open the raw data. Select all cycles and click Export ASCII on the toolbar. Check the Cycle, Voltage, and CycleTime in Columns to Export on the right side of the program.
    2. Click Create Directory and then click Export to convert raw data to spreadsheet format.
    3. Open the spreadsheet file and extract the voltage and CycleTime values for cycles 10, 20, 30, 40, and 50, which are the last cycles at each current density.
    4. Plot the GCD graph with the cycle time as the X-axis and voltage as the Y-axis.
  3. EIS data analysis for fitting the graph
    1. Open raw measurement data in EIS program. Click the Open file icon and open raw data and click the file name that was applied to see the detailed data.
    2. Extract Z' [Ohm] as the X value and Z'' [Ohm] as the Y value and plot the EIS graph.

Results

The electrodes were manufactured according to protocol step 1 (Figure 1). Thin and homogeneous electrodes were attached to SUS mesh with a size of 1 cm2 and 0.1-0.2 mm thickness. After drying, the weight of the pure electrode was obtained. The electrode was immersed in a 2 M H2SO4 aqueous electrolyte, and the electrolyte was allowed to sufficiently permeate the electrode before the electrochemical analyses. The production sequence and system setting for the e...

Discussion

This study provides a protocol for various analyses using a three-electrode system with a potentiostat device. This system is widely used to evaluate the electrochemical performance of supercapacitors. A suitable sequence for each analysis (CV, GCD, and EIS) is important for obtaining optimized electrochemical data. Compared with the two-electrode system having a simple setup, the three-electrode system is specialized for analyzing supercapacitors at the material level15. However, the selection of...

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000280), and the Chung-Ang University Graduate Research Scholarship 2021.

Materials

NameCompanyCatalog NumberComments
Activated carbonGSActive material
Ag/AgCl electrodeBASiRE-5BReference electrode
Carbon blackHyundaiConductive material
DesicatorNavimro
Electrode pressing machineRotech
ExtractorWonA TechConvert program (raw data to excel form)
Isopropanol(IPA)SamchunI0346Solvent to melt the binder
Polytetrafluoroethylene(PTFE)HyundaiBinder
PotentiostatWonA TechZive SP1
Pt electrodeBASiMW-018122017Counter electrode
Reaction flaskDuranContainer for electrolyte
SM6WonA TechProgram of setting sequence and measuring electrochemical result
Sulfuric acidSamshunS1423Electrolyte
SUS meshNavimroCurrent collector
Teflon capWonA TechCap of the electrolyte continer
ZmanWonA TechEIS program

References

  1. El-Kady, M. F., et al. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage. Proceedings of the National Academy of Sciences. 112 (14), 4233 (2015).
  2. Gee, A. M., Robinson, F. V. P., Dunn, R. W. Analysis of Battery Lifetime Extension in a Small-Scale Wind-Energy System Using Supercapacitors. IEEE Transactions on Energy Conversion. 28 (1), 24-33 (2013).
  3. Zhang, Z., et al. A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Applied Energy. 178, 177-188 (2016).
  4. Libich, J., Máca, J., Vondrák, J., Čech, O., Sedlaříková, M. Supercapacitors: Properties and Applications. Journal of Energy Storage. 17, 224-227 (2018).
  5. Cheng, Y. Super capacitor applications for renewable energy generation and control in smart grids. 2011 IEEE International Symposium on Industrial Electronics. , 1131-1136 (2011).
  6. Mathis, T. S., et al. Energy Storage Data Reporting in Perspective-Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Advanced Energy Materials. 9 (39), 1902007 (2019).
  7. González, A., Goikolea, E., Barrena, J. A., Mysyk, R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews. 58, 1189-1206 (2016).
  8. Yang, L., et al. Emergence of melanin-inspired supercapacitors. Nano Today. 37, 101075 (2021).
  9. Hendel, S. J., Young, E. R. Introduction to Electrochemistry and the Use of Electrochemistry to Synthesize and Evaluate Catalysts for Water Oxidation and Reduction. Journal of Chemical Education. 93 (11), 1951-1956 (2016).
  10. Licht, F., Aleman Milán, G., Andreas, H. A. Bringing Real-World Energy-Storage Research into a Second-Year Physical-Chemistry Lab Using a MnO2-Based Supercapacitor. Journal of Chemical Education. 95 (11), 2028-2033 (2018).
  11. Jakubowska, A. A Student-Constructed Galvanic Cell for the Measurement of Cell Potentials at Different Temperatures. Journal of Chemical Education. 93 (5), 915-919 (2016).
  12. González-Flores, D., Montero, M. L. An Advanced Experiment for Studying Electron Transfer and Charge Storage on Surfaces Modified with Metallic Complexes. Journal of Chemical Education. 90 (8), 1077-1081 (2013).
  13. Da Silva, L. M., et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Materials. 27, 555-590 (2020).
  14. Choudhary, Y. S., Jothi, L., Nageswaran, G. . Electrochemical Characterization. Spectroscopic Methods for Nanomaterials Characterization. , 19-54 (2017).
  15. Girard, H. -. L., Dunn, B., Pilon, L. Simulations and Interpretation of Three-Electrode Cyclic Voltammograms of Pseudocapacitive Electrodes. Electrochimica Acta. 211, 420-429 (2016).
  16. Bard, A. J., Inzelt, G., Scholz, F. . Electrochemical Dictionary. , (2012).
  17. Bard, A. J., Faulkner, L. R. . Electrochemical methods: fundamentals and applications. , (2000).
  18. Elgrishi, N., et al. A Practical Beginner's Guide to Cyclic Voltammetry. Journal of Chemical Education. 95 (2), 197-206 (2018).
  19. Shiraishi, S., Tanaike, O. Application of Carbon Materials Derived from Fluorocarbons in an Electrochemical Capacitor. Advanced Fluoride-Based Materials for Energy Conversion. , 415-430 (2015).
  20. Inagaki, M., Kang, F. . Materials Science and Engineering of Carbon: Fundamentals. , (2014).
  21. Fleischmann, S., et al. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chemical Reviews. 120 (14), 6738-6782 (2020).
  22. Miao, Y. -. E., Liu, T. . Electrospinning: Nanofabrication and Applications. , 641-669 (2019).
  23. Yin, J., Qi, L., Wang, H. Antifreezing Ag/AgCl reference electrodes: Fabrication and applications. Journal of Electroanalytical Chemistry. 666, 25-31 (2012).
  24. Bard, A. J., Faulkner, L. R. . Electrochemical Methods: Fundamentals and Applications. , (2001).
  25. Wang, W., et al. Electrochemical cells for medium- and large-scale energy storage: fundamentals. Advances in Batteries for Medium and Large-Scale Energy Storage. , 3-28 (2015).
  26. Mansfeld, F. Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. Journal of Applied Electrochemistry. 25 (3), 187-202 (1995).
  27. Murbach, M. D., Hu, V. W., Schwartz, D. T. Nonlinear Electrochemical Impedance Spectroscopy of Lithium-Ion Batteries: Experimental Approach, Analysis, and Initial Findings. Journal of The Electrochemical Society. 165 (11), 2758-2765 (2018).
  28. Macdonald, J. R., Johnson, W. B. . Impedance Spectroscopy. , 1-26 (2005).
  29. Chen, S. . Handbook of Electrochemistry. , 3-56 (2007).
  30. Xi, S., Zhu, Y., Yang, Y., Jiang, S., Tang, Z. Facile Synthesis of Free-Standing NiO/MnO2 Core-Shell Nanoflakes on Carbon Cloth for Flexible Supercapacitors. Nanoscale Research Letters. 12 (1), 171 (2017).
  31. Kim, M., Oh, I., Kim, J. Superior electric double layer capacitors using micro- and mesoporous silicon carbide sphere. Journal of Materials Chemistry A. 3 (7), 3944-3951 (2015).
  32. Stoller, M. D., Ruoff, R. S. Best practice methods for determining an electrode material's performance for ultracapacitors. Energy & Environmental Science. 3 (9), 1294-1301 (2010).
  33. Taberna, P. L., Simon, P., Fauvarque, J. F. Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. Journal of The Electrochemical Society. 150 (3), 292 (2003).
  34. Yang, I., Kim, S. -. G., Kwon, S. H., Kim, M. -. S., Jung, J. C. Relationships between pore size and charge transfer resistance of carbon aerogels for organic electric double-layer capacitor electrodes. Electrochimica Acta. 223, 21-30 (2017).
  35. Arulepp, M., et al. Influence of the solvent properties on the characteristics of a double layer capacitor. Journal of Power Sources. 133 (2), 320-328 (2004).
  36. Mei, B. -. A., Munteshari, O., Lau, J., Dunn, B., Pilon, L. Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. The Journal of Physical Chemistry C. 122 (1), 194-206 (2018).
  37. Nian, Y. -. R., Teng, H. Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors. Journal of Electroanalytical Chemistry. 540, 119-127 (2003).
  38. Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F., Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of Power Sources. 101 (1), 109-116 (2001).
  39. Coromina, H. M., Adeniran, B., Mokaya, R., Walsh, D. A. Bridging the performance gap between electric double-layer capacitors and batteries with high-energy/high-power carbon nanotube-based electrodes. Journal of Materials Chemistry A. 4 (38), 14586-14594 (2016).
  40. Fang, B., Binder, L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. Journal of Power Sources. 163 (1), 616-622 (2006).
  41. Lei, C., et al. Activated carbon from phenolic resin with controlled mesoporosity for an electric double-layer capacitor (EDLC). Journal of Materials Chemistry A. 1 (19), 6037-6042 (2013).
  42. Lewandowski, A., Olejniczak, A., Galinski, M., Stepniak, I. Performance of carbon-carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes. Journal of Power Sources. 195 (17), 5814-5819 (2010).
  43. Dai, Z., Peng, C., Chae, J. H., Ng, K. C., Chen, G. Z. Cell voltage versus electrode potential range in aqueous supercapacitors. Scientific Reports. 5 (1), 9854 (2015).
  44. Kang, B., Ceder, G. Battery materials for ultrafast charging and discharging. Nature. 458 (7235), 190-193 (2009).
  45. Ban, C., et al. Nanostructured Fe3O4/SWNT Electrode: Binder-Free and High-Rate Li-Ion Anode. Advanced Materials. 22 (20), 145-149 (2010).
  46. Sun, Y., Hu, X., Luo, W., Xia, F., Huang, Y. Reconstruction of Conformal Nanoscale MnO on Graphene as a High-Capacity and Long-Life Anode Material for Lithium Ion Batteries. Advanced Functional Materials. 23 (19), 2436-2444 (2013).
  47. Lou, X. W., Deng, D., Lee, J. Y., Feng, J., Archer, L. A. Self-Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium-Ion Battery Electrodes. Advanced Materials. 20 (2), 258-262 (2008).
  48. Chen, L., et al. Electrochemical Stability Window of Polymeric Electrolytes. Chemistry of Materials. 31 (12), 4598-4604 (2019).
  49. Ruschhaupt, P., Pohlmann, S., Varzi, A., Passerini, S. Determining Realistic Electrochemical Stability Windows of Electrolytes for Electrical Double-Layer Capacitors. Batteries & Supercaps. 3 (8), 698-707 (2020).
  50. Kang, J., et al. Extraordinary Supercapacitor Performance of a Multicomponent and Mixed-Valence Oxyhydroxide. Angewandte Chemie International Edition. 54 (28), 8100-8104 (2015).
  51. Pal, B., Yang, S., Ramesh, S., Thangadurai, V., Jose, R. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances. 1 (10), 3807-3835 (2019).
  52. Xie, K., et al. Carbon Nanocages as Supercapacitor Electrode Materials. Advanced Materials. 24 (3), 347-352 (2012).
  53. Demarconnay, L., Raymundo-Piñero, E., Béguin, F. A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution. Electrochemistry Communications. 12 (10), 1275-1278 (2010).
  54. Frackowiak, E. Carbon materials for supercapacitor application. Physical Chemistry Chemical Physics. 9 (15), 1774-1785 (2007).
  55. Zhu, X., et al. Sustainable activated carbons from dead ginkgo leaves for supercapacitor electrode active materials. Chemical Engineering Science. 181, 36-45 (2018).
  56. Wang, Y., et al. Study on stability of self-breathing DFMC with EIS method and three-electrode system. International Journal of Hydrogen Energy. 38 (21), 9000-9007 (2013).
  57. Xin, L., Zhang, Z., Qi, J., Chadderdon, D., Li, W. Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: Reaction pathway investigation in three-electrode cell and fuel cell reactors. Applied Catalysis B: Environmental. 125, 85-94 (2012).
  58. Fang, X., Kalathil, S., Divitini, G., Wang, Q., Reisner, E. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proceedings of the National Academy of Sciences. 117 (9), 5074 (2020).
  59. Armstrong, E., sullivan, M., O'Connell, J., Holmes, J., O'Dwyer, C. 3D Vanadium Oxide Inverse Opal Growth by Electrodeposition. Journal of The Electrochemical Society. 162, 605-612 (2015).
  60. Wu, W. -. Y., Zhong, X., Wang, W., Miao, Q., Zhu, J. -. J. Flexible PDMS-based three-electrode sensor. Electrochemistry Communications. 12 (11), 1600-1604 (2010).
  61. Shitanda, I., et al. A screen-printed three-electrode-type sticker device with an accurate liquid junction-type reference electrode. Chemical Communications. 57 (23), 2875-2878 (2021).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

SupercapacitorsThree electrode SystemElectrochemical PropertiesSpecific CapacitanceEnergy Storage SystemActivated CarbonCarbon BlackBinderPotentiostat MeasurementElectrolyte SolutionStainless Steel MeshVoltage Scan RateCyclic ModeExperimental ProtocolWeight Measurement

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved