A subscription to JoVE is required to view this content. Sign in or start your free trial.
The protocol describes the evaluation of various electrochemical properties of supercapacitors using a three-electrode system with a potentiostat device.
The three-electrode system is a basic and general analytical platform for investigating the electrochemical performance and characteristics of energy storage systems at the material level. Supercapacitors are one of the most important emergent energy storage systems developed in the past decade. Here, the electrochemical performance of a supercapacitor was evaluated using a three-electrode system with a potentiostat device. The three-electrode system consisted of a working electrode (WE), reference electrode (RE), and counter electrode (CE). The WE is the electrode where the potential is controlled and the current is measured, and it is the target of research. The RE acts as a reference for measuring and controlling the potential of the system, and the CE is used to complete the closed circuit to enable electrochemical measurements. This system provides accurate analytical results for evaluating electrochemical parameters such as the specific capacitance, stability, and impedance through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). Several experimental design protocols are proposed by controlling the parameter values of the sequence when using a three-electrode system with a potentiostat device to evaluate the electrochemical performance of supercapacitors. Through these protocols, the researcher can set up a three-electrode system to obtain reasonable electrochemical results for assessing the performance of supercapacitors.
Supercapacitors have attracted enormous attention as suitable power sources for a variety of applications such as microelectronic devices, electric vehicles (EVs), and stationary energy storage systems. In EV applications, supercapacitors can be used for rapid acceleration and can enable the storage of regenerative energy during the deceleration and braking processes. In renewable energy fields, such as solar power generation1 and wind power generation2, supercapacitors can be used as stationary energy storage systems3,4. Renewable energy generation is limited by....
1. Fabrication of electrode and supercapacitor (Figure 1)
The electrodes were manufactured according to protocol step 1 (Figure 1). Thin and homogeneous electrodes were attached to SUS mesh with a size of 1 cm2 and 0.1-0.2 mm thickness. After drying, the weight of the pure electrode was obtained. The electrode was immersed in a 2 M H2SO4 aqueous electrolyte, and the electrolyte was allowed to sufficiently permeate the electrode before the electrochemical analyses. The production sequence and system setting for the e.......
This study provides a protocol for various analyses using a three-electrode system with a potentiostat device. This system is widely used to evaluate the electrochemical performance of supercapacitors. A suitable sequence for each analysis (CV, GCD, and EIS) is important for obtaining optimized electrochemical data. Compared with the two-electrode system having a simple setup, the three-electrode system is specialized for analyzing supercapacitors at the material level15. However, the selection of.......
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20214000000280), and the Chung-Ang University Graduate Research Scholarship 2021.
....Name | Company | Catalog Number | Comments |
Activated carbon | GS | Active material | |
Ag/AgCl electrode | BASi | RE-5B | Reference electrode |
Carbon black | Hyundai | Conductive material | |
Desicator | Navimro | ||
Electrode pressing machine | Rotech | ||
Extractor | WonA Tech | Convert program (raw data to excel form) | |
Isopropanol(IPA) | Samchun | I0346 | Solvent to melt the binder |
Polytetrafluoroethylene(PTFE) | Hyundai | Binder | |
Potentiostat | WonA Tech | Zive SP1 | |
Pt electrode | BASi | MW-018122017 | Counter electrode |
Reaction flask | Duran | Container for electrolyte | |
SM6 | WonA Tech | Program of setting sequence and measuring electrochemical result | |
Sulfuric acid | Samshun | S1423 | Electrolyte |
SUS mesh | Navimro | Current collector | |
Teflon cap | WonA Tech | Cap of the electrolyte continer | |
Zman | WonA Tech | EIS program |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved