Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we describe a detailed method for mitochondria isolation from mouse skeletal muscle and the subsequent analysis of respiration by Oxygen Consumption Rate (OCR) using microplate-based respirometric assays. This pipeline can be applied to study the effects of multiple environmental or genetic interventions on mitochondrial metabolism.

Abstract

Most of the cell's energy is obtained through the degradation of glucose, fatty acids, and amino acids by different pathways that converge on the mitochondrial oxidative phosphorylation (OXPHOS) system, which is regulated in response to cellular demands. The lipid molecule Coenzyme Q (CoQ) is essential in this process by transferring electrons to complex III in the electron transport chain (ETC) through constant oxidation/reduction cycles. Mitochondria status and, ultimately, cellular health can be assessed by measuring ETC oxygen consumption using respirometric assays. These studies are typically performed in established or primary cell lines that have been cultured for several days. In both cases, the respiration parameters obtained may have deviated from normal physiological conditions in any given organ or tissue.

Additionally, the intrinsic characteristics of cultured single fibers isolated from skeletal muscle impede this type of analysis. This paper presents an updated and detailed protocol for the analysis of respiration in freshly isolated mitochondria from mouse skeletal muscle. We also provide solutions to potential problems that could arise at any step of the process. The method presented here could be applied to compare oxygen consumption rates in diverse transgenic mouse models and study the mitochondrial response to drug treatments or other factors such as aging or sex. This is a feasible method to respond to crucial questions about mitochondrial bioenergetics metabolism and regulation.

Introduction

Mitochondria are the primary metabolic organelles in the cell1. These specialized membrane-enclosed organelles use nutrient molecules to produce energy in the form of adenosine triphosphate (ATP) by OXPHOS. This process relies on the transfer of electrons from donor molecules in a series of redox reactions in the ETC2. CoQ is the only redox-active lipid that is endogenously produced in all cellular membranes and circulating lipoproteins that shows antioxidant function3. It is an essential component of the ETC, transferring electrons from NADH-dependent complex I and FADH2-dependent comp....

Protocol

Mouse housing and tissue collection were performed using protocols approved by the Universidad Pablo de Olavide Ethics Committee (Sevilla, Spain; protocols 24/04/2018/056 and 12/03/2021/033) in accordance with Spanish Royal Decree 53/2013, European Directive 2010/63/EU, and other relevant guidelines.

1. Preparation of stocks, buffers, and reagents for the respiration assays

  1. Prepare the following stock solutions, which can be stored at the indicated temperature for .......

Representative Results

The protocol presented here allows the in vivo analysis of mitochondrial respiration through the isolation of mitochondria from mouse skeletal muscle. An outline of the method is shown in Figure 1. After dissecting skeletal muscles from the hindlimbs (Figure 2), tissues are homogenized and mitochondria purified, under isotonic conditions, through serial centrifugations. The purity of the different fractions obtained during the isolation process can be a.......

Discussion

All methods used to study mitochondrial respiration have their limitations; hence, it is crucial to select the method that best suits a specific experimental question. This work provides an updated and detailed protocol to isolate mitochondria from mouse skeletal muscle to perform different respiratory assays to investigate mitochondrial function. Indeed, the study of mitochondrial bioenergetics in isolated mitochondria using microplate-based technologies is valuable to study tissue-specific respiration in terms of repro.......

Acknowledgements

We wish to thank Juan J. Tena for the use of the homogenizer and the CABD Proteomics and Animal Husbandry facilities for technical support. This work was supported by the Spanish Ministry of Education, Culture and Sports through fellowship FPU16/03264 to J.D.H.C., the Association Française contre les Myopathies (AFM) through fellowship grant #22450 to C.V.-G., an Institutional Grant MDM-2016-0687 (Maria de Maeztu Excellence Unit, Department of Gene Regulation and Morphogenesis at CABD) and BFU2017-83150-P to J.J.C. The Junta de Andalucía grant P18-RT-4572, the FEDER Funding Program from the European Union, and Spanish Ministry of Science, Innovation and Univ....

Materials

NameCompanyCatalog NumberComments
ADPSigmaA5285Stock at -20 °C
AKT antibodyCell Signaling TechnologyC67E7Rabbit (Host species)
anti-Goat HRPSigma401504Rabbit (Host species)
anti-Mouse HRPCell Signaling#7076Horse (Host species)
Antimycin ASigmaA8674Stock at -20 °C
anti-Rabbit HRPCell Signaling#7074Goat (Host species)
Ascorbic acidSigmaA5960Stock at RT
Bactin antibodySigmaMBS4-48085Goat (Host species)
Bio-Rad Protein Assay Kit IIBio-Rad5000002It includes 5x Bradford reagent and BSA of known concentration for the standard curve
BSA, fraction V, Fatty Acid-FreeCalbiochem126575Stock at 4 °C
C tubeMiltenyi Biotec130-093-237Purple lid
Calnexin antibodyThermoFisherMA3-027Mouse (Host species)
D-mannitolSigmaM4125Stock at RT
EDTABDH280254DStock at 4 °C
EGTASigmaE-4378Stock at RT
FCCPSigmaC2920Stock at -20 °C
gentleMACS DissociatorMiltenyi Biotec130-093-235Homogenizer
HEPESSigmaH3375Stock at RT
HSP70 antibodyProteintech10995-1-APRabbit (Host species)
LDH-A antibodySanta Cruz BiotechnologySC27230Goat (Host species)
Magnesium chlorideChemCruzsc-255260AStock at RT
Malic acidSigmaP1645Stock at RT
Microplate spectrophotometerBMG LABTECH GmbHPOLARstar OMEGA S/N 415-0292Stock at RT
Milli-Q waterMillipore systemF7HA17757AUltrapure water
mtTFA antibodySanta Cruz BiotechnologySC23588Goat (Host species)
Na+/K+-ATPase α1 antibodyNovus BiologicalsNB300-14755Mouse (Host species)
OligomycinSigmaO4876Stock at -20 °C
Palmitoyl-L-carnitineSigmaP1645Stock at -20 °C
PBS tabletsSigmaP4417-100TAB1x stock at RT
Potassium dihydrogen phosphateChemCruzsc-203211Stock at RT
Potassium hydroxideSigma60377Stock at RT
Pyruvic acidSigma107360Stock at 4 °C
RotenoneSigmaR8875Stock at -20 °C
Seahorse XF24 mitochondrial flux analyzerAgilent Technologies420179XFe24 model
Seahorse XFe24 FluxPak miniAgilent Technologies102342-100The kit includes cartridges, microplates, and calibrant solution
SuccinateSigmaS7626Stock at RT
SucroseSigmaS9378Stock at RT
TIMM23 antibodyAbcamab230253Rabbit (Host species)
TMPDSigmaT7394Stock at -20 °C
TOMM20 antibodyAbcamab56783Mouse (Host species)
VDAC antibodyAbcamab15895Rabbit (Host species)

References

  1. Spinelli, J. B., Haigis, M. C. The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology. 20 (7), 745-754 (2018).
  2. Alberts, B., et al. The mitochondrion. Molecular Biology of the Cell, 4th edition

Explore More Articles

Mitochondria IsolationRespirometric AssaysSkeletal MuscleMousePurificationRespiration AnalysisExperimental ConditionsTissueOrganismAgingDrug TestingCancerDevelopmentPBSEDTAIB1DissectionSkeletal MusclesTibialis AnteriorExtensor Digitorum LongusGastrocnemiusSoleus

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved