Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The goal of this protocol is to characterize a novel model of glaucomatous neurodegeneration based on 360° thermic cauterization of limbal vascular plexus, inducing subacute ocular hypertension.

Abstract

Glaucoma, the second leading cause of blindness worldwide, is a heterogeneous group of ocular disorders characterized by structural damage to the optic nerve and retinal ganglion cell (RGC) degeneration, resulting in visual dysfunction by interrupting the transmission of visual information from the eye to the brain. Elevated intraocular pressure is the most important risk factor; thus, several models of ocular hypertension have been developed in rodents by either genetic or experimental approaches to investigate the causes and effects of the disease. Among those, some limitations have been reported such as surgical invasiveness, inadequate functional assessment, requirement of extensive training, and highly variable extension of retinal damage. The present work characterizes a simple, low-cost, and efficient method to induce ocular hypertension in rodents, based on low-temperature, full-circle cauterization of the limbal vascular plexus, a major component of aqueous humor drainage. The new model provides a technically easy, noninvasive, and reproducible subacute ocular hypertension, associated with progressive RGC and optic nerve degeneration, and a unique post-operative clinical recovery rate that allows in vivo functional studies by both electrophysiological and behavioral methods.

Introduction

Medical literature understands glaucoma as a heterogeneous group of optic neuropathies characterized by progressive degeneration of retinal ganglion cells (RGCs), dendrites, soma, and axons, resulting in structural cupping (excavation) of the optic disc and functional deterioration of the optic nerve, leading to amaurosis in uncontrolled cases by interrupting the transmission of visual information from the eye to the brain1. Glaucoma is currently the most common cause of irreversible blindness worldwide, predicted to reach approximately 111.8 million people in 20402, thus deeply affecting patients' quality of life (Q....

Protocol

All procedures were performed in compliance with the Statement for the Use of Animals in Ophthalmic and Visual Research from the Association for Research in Vision and Ophthalmology (ARVO) and approved by the Ethics Committee on the Use of Animals in Scientific Experimentation from the Health Sciences Center, Federal University of Rio de Janeiro (protocol 083/17). In the present work, Lister Hooded rats of both genders were used, aged 2-3 months and weighing 180-320 g. However, the procedure can be adapted in different r.......

Representative Results

The quantitative variables are expressed as mean ± standard error of the mean (SEM). Except for the comparison of IOP dynamics between OHT and control groups (Figure 1F), statistical analysis was performed using two-way ANOVA followed by Sidak's multiple comparisons test. A p-value < 0.05 was considered statistically significant.

Figure 1 illustrates surgical steps of the full-circle limbal plexus cauterization (LPC) mode.......

Discussion

Limbal plexus cauterization (LPC) is a novel post-trabecular model with the advantage that it targets easily accessible vascular structures not requiring conjunctival or tenon dissection17,28. Differently from the vortex veins cauterization model, a renowned OHT model based on the surgical impairment to choroid venous drainage, venous congestion is not expected to influence IOP rise in the LPC model, as limbal veins are situated upstream in aqueous humor outflow........

Acknowledgements

We acknowledge our laboratory technicians José; Nilson dos Santos, Daianne Mandarino Torres, José Francisco Tibúrcio, Gildo Brito de Souza, and Luciano Cavalcante Ferreira. This research was funded by FAPERJ, CNPq, and CAPES.

....

Materials

NameCompanyCatalog NumberComments
AcetoneIsofar201Used for electron microscopy tissue preparation (step 5)
Active electrode for electroretinographyHansol Medical Co-Stainless steel needle 0.25 mm × 15 mm
AnestalconNovartis Biociências S/AMS-1.0068.1087Proxymetacaine hydrochloride 0.5%
Calcium chlorideVetec560Used for electron microscopy tissue preparation (step 5)
Cautery Low Temp Fine Tip 10/bxBovie Medical CorporationAA00Low-temperature ophthalmic cautery
CetaminSyntec do Brasil Ltda000200-3-000003Ketamine hydrochloride 10%
DAKODako North AmericaS3023Antifade mounting medium
DAPIThermo Fisher Scientific28718-90-3diamidino-2-phenylindole; blue fluorescent nuclear counterstain; emission at 452±3 nm
EcofilmCristália Produtos Químicos Farmacêuticos LtdaMS-1.0298.0487Carmellose sodium 0.5%
EPON ResinPolysciences, Inc.-Epoxy resin used for electron microscopy, composed of a mixture of four reagents: Poly/Bed 812 Resin (CAT#08791); DDSA - Dodecenylsuccinic Anhydride (CAT#00563); NMA - Nadic Methyl Anhydride (CAT#00886); DMP-30 - 2,4,6-tris(dimethylaminomethyl)phenol (CAT#00553)
GlutaraldehydeElectron Microscopy Sciences16110Used for electron microscopy tissue preparation (step 5)
HyabakUnião Química Farmacêutica Nacional S/AMS-8042140002Sodium hyaluronate 0.15%
Icare TonolabIcare Finland OyTV02 (model number)Rebound handheld tonometer
IgG donkey anti-mouse antibody + Alexa Fluor 555Thermo Fisher ScientificA31570Secondary antibody solution
LCD monitor 23 inchesSamsung Electronics Co. Ltd.S23B550Model LS23B550, for electroretinogram recording
LSM 510 MetaCarl Zeiss-Confocal epifluorescence microscope
MaxifloxCristália Produtos Químicos Farmacêuticos LtdaMS-1.0298.0489Ciprofloxacin 3.5 mg/g
MEB-9400KNihon Kohden Corporation-System for electroretinogram recording
monoclonal IgG1 mouse anti-Brn3aMilliporeSigmaMAB-1585Brn3a primary antibody solution
Neuropack Manager v08.33Nihon Kohden Corporation-Software for electroretinogram signal processing
OptomotryCerebralMechanics-System for optomotor response analysis
Osmium tetroxideElectron Microscopy Sciences19100Used for electron microscopy tissue preparation (step 5)
Potassium ferrocyanideElectron Microscopy Sciences20150Used for electron microscopy tissue preparation (step 5)
Reference and ground electrodes for electroretinographyChalgren Enterprises110-63Stainless steel needles 0.4 mm × 37 mm
Sodium cacodylate bufferElectron Microscopy Sciences12300Used for electron microscopy tissue preparation (step 5)
Ster MDUnião Química Farmacêutica Nacional S/AMS-1.0497.1287Prednisolone acetate 0.12%
TerolacCristália Produtos Químicos Farmacêuticos LtdaMS-1.0497.1286Ketorolac trometamol 0.5%
TerramicinaLaboratórios Pfizer LtdaMS-1.0216.0024Oxytetracycline hydrochloride 30 mg/g + polymyxin B 10,000 U/g
Tono-Pen XLReichert Technologies230635Digital applanation handheld tonometer
TO-PRO-3Thermo Fisher ScientificT3605Far red-fluorescent nuclear counterstain; emission at 661 nm
Triton X-100Sigma-Aldrich9036-19-5Non-ionic surfactant
Uranyl acetateElectron Microscopy Sciences22400Used for electron microscopy tissue preparation (step 5)
XilazinSyntec do Brasil Ltda7899Xylazine hydrochloride 2%
Carl Zeiss-Stereo microscope for surgery and retinal dissection

References

  1. Weinreb, R. N., Aung, T., Medeiros, F. A. The Pathophysiology and Treatment of Glaucoma A Review. JAMA. 311 (8), 1901-1911 (2014).
  2. Tham, Y. C., et al. Global prevalence of glaucoma ....

Explore More Articles

GlaucomaLimbal Vascular PlexusIntraocular PressureOptic NerveRetinaCauterizationRodentsAnimal ModelNeurodegenerative DisordersTopical MedicationsOptomotor Response

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved