A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Here, we present an inexpensive quantitative method utilizing deuterium oxide and gas chromatography mass spectrometry (GCMS) for the analysis of total fatty acid de novo lipogenesis in brown adipose tissue in vivo.
Fatty acid synthesis is a complex and highly energy demanding metabolic pathway with important functional roles in the control of whole-body metabolic homeostasis and other physiological and pathological processes. Contrary to other key metabolic pathways, such as glucose disposal, fatty acid synthesis is not routinely functionally assessed, leading to incomplete interpretations of metabolic status. In addition, there is a lack of publicly available detailed protocols suitable for newcomers in the field. Here, we describe an inexpensive quantitative method utilizing deuterium oxide and gas chromatography mass spectrometry (GCMS) for the analysis of total fatty acid de novo synthesis in brown adipose tissue in vivo. This method measures the synthesis of the products of fatty acid synthase independently of a carbon source, and it is potentially useful for virtually any tissue, in any mouse model, and under any external perturbation. Details on the sample preparation for GCMS and downstream calculations are provided. We focus on the analysis of brown fat due to its high levels of de novo fatty acid synthesis and critical roles in maintaining metabolic homeostasis.
Obesity and associated metabolic diseases are a pandemic that endanger present and future generations1,2. Commonly simplified as the consequence of the imbalance between energy intake and expenditure, the metabolic dysregulation associated with obesity affects a large number of metabolic pathways controlled by environmental and endogenous factors3. However, only a few pathways are routinely tested in animal models of metabolic dysregulation.
As an example, glucose disposal is routinely measured by glucose and insulin tolerance tests, probably due to the simpl....
All experiments were approved by the Institutional Animal Care and Use Committee at Cincinnati Children's Hospital Medical Center.
1. Preparation of D2O
NOTE: To avoid experimental variation, prepare sufficient solution/drinking water for all mice for the duration of the experiment.
Based on the D2O dosing described in step 1, we typically find that body water is enriched in the range of 2.5% to 6%, and that a baseline level of deuterium enrichment in body water is rapidly achieved in 1 h and maintained for the duration of the study via 8% enriched drinking water (Figure 1). Continuous steady state body water enrichment is an assumption of the calculations used in step 6, and so we recommend experimental validation of the kinetics of body water enric.......
Understanding the balance and interaction between complex metabolic pathways is an indispensable step toward understanding the biological basis of metabolic related diseases. Here, we show a noninvasive and inexpensive methodology to determine changes in de novo fatty acid synthesis. This method is adapted from previously published methods which developed calculations for estimating de novo synthesis flux from fatty acid deuterium enrichment31 and for using deuterium-acetone exch.......
We thank the Sanchez-Gurmaches and Wallace lab members for valuable discussions. This work was supported by grants from the American Heart Association (18CDA34080527 to JSG and 19POST34380545 to RM), the NIH (R21OD031907 to JSG), a CCHMC Trustee Award, a CCHMC Center for Pediatric Genomics Award, and a CCHMC Center for Mendelian Genomics & Therapeutics Award. This work was supported in part by NIH P30 DK078392 of the Digestive Diseases Research Core Center in Cincinnati. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. RT and MW were supported by a UCD Ad Astra Fello....
Name | Company | Catalog Number | Comments |
4 mL Glass Vials | Fisher Scientific | 14-955-334 | |
0.2 µm filter | Olympus Plastic | 25-244 | |
26G needeled syringes | BD | 309597 | |
Acetone | Merck | 34850 | |
Acetonitrile | Merck | 900667 | |
Blue GC screw cap with septa | Agilent | 5190-1599 | |
Centrifuge | Eppendorf | 5424R | |
Chloroform | Sigma | 366927 | |
Deuterium oxide | Sigma | 151882 | |
Di-tert-butyl-4-methylphenol (BHT) Select FAME Column | Merck | B1378 | |
Di-tert-butyl-4-methylphenol (BHT) Select FAME Column | Agilent | CP7419 | |
EDTA tube | Sarstedt | 411395105 | |
Ethanol | Merck | 51976 | |
Hexadecenoic-d31 Acid | Larodan | 71-1631 | |
Hexane | Merck | 34859 | |
Methanol | Merck | 34860 | |
Microcentrifuge tube | Olympus Plastic | 24-282 | |
Mouse environmental chamber | Caron | Caron 7001-33 | |
Potasium Chloride | Fisher Bioreagents | BP366-500 | |
Potasium Phosphate | MP Biomedicals | 194727 | |
SafeLock microcentrifuge tubes | Eppendorf | 30120086 | |
Screw top amber GC vial | Agilent | 5182-0716 | |
Sodium Chloride | Fisher Bioreagents | BP358-212 | |
Sodium Hydroxide | Merck | S5881 | |
Sodium Phosphate, dibasic | Fisher Bioreagents | BP332-500 | |
Sodium Sulfate | Merck | 239313 | |
Sulfuric Acid | Merck | 258105 | |
Vial insert | Agilent | 5183-2088 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved