A subscription to JoVE is required to view this content. Sign in or start your free trial.
Presented here is a surgical procedure for permanent ligation of the left coronary artery in mice. This model can be used to investigate the pathophysiology and associated inflammatory response after myocardial infarction.
Ischemic heart disease and subsequent myocardial infarction (MI) is one of the leading causes of mortality in the United States and around the world. In order to explore the pathophysiological changes after myocardial infarction and design future treatments, research models of MI are required. Permanent ligation of the left coronary artery (LCA) in mice is a popular model to investigate cardiac function and ventricular remodeling post MI. Here we describe a less invasive, reliable, and reproducible surgical murine MI model by permanent ligation of the LCA. Our surgical model comprises of an easily reversible general anesthesia, endotracheal intubation that does not require a tracheotomy, and a thoracotomy. Electrocardiography and troponin measurement should be performed to ensure MI. Echocardiography at day 28 after MI will discern heart function and heart failure parameters. The degree of cardiac fibrosis can be evaluated by Masson's trichrome staining and cardiac MRI. This MI model is useful for studying the pathophysiological and immunological alterations after MI.
Cardiovascular disease is a major public health concern that claims 17.9 million lives each year, accounting for 31 percent of global mortality1. The most prevalent type of cardiovascular anomaly is coronary heart disease, and myocardial infarction (MI) is one of the major manifestations of coronary heart disease2. MI is usually caused by thrombotic occlusion of a coronary artery due to the rupture of a vulnerable plaque3. The resulting ischemia causes profound ionic and metabolic changes in the affected myocardium, as well as a rapid decrease in systolic function. MI results in the death of cardi....
The present study protocol was reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Pittsburgh. Eight (sham n = 4 and MI n = 4) 1-year-old female C57BL/6J mice weighing 24-30 g were used for these experiments. Approximately 100% and at least 80% of mice survived in the first 24 h and 28 days, respectively.
1. Preparation and endotracheal intubation of the mice
Figure 1 demonstrates the representative active ECG and respiration signals during the echocardiographic evaluation of sham (Figure 1A) and MI (Figure 1B) mice. Verification of active ECG and respiration signals are important before acquiring the echocardiographic data. Figure 2 shows echocardiographic measurement of cardiac functional parameters following 28 days after LCA ligation.
The murine model of MI is gaining popularity in cardiovascular research laboratories, and this study describes a reproducible and clinically relevant MI model. This protocol improves the LCA ligation process in several ways. To begin with, the use of injectable pre-operative anesthetics such as xylazine/ketamine or sodium pentobarbital14,15 is avoided. Only isoflurane anesthesia was used, which helps enhance animal survival rates (>80% survival 28 days after .......
This work was supported by National Institute of Health grants (R01HL143967, R01HL142629, R01AG069399, and R01DK129339), AHA Transformational Project Award (19TPA34910142), AHA Innovative Project Award (19IPLOI34760566), and ALA Innovation Project Award (IA-629694) (to PD).
....Name | Company | Catalog Number | Comments |
22 G catheter needle | Exel INT | 26741 | Thoracentesis |
24 G catheter needle | Exel INT | 26746 | Endotracheal intubation |
4-0 nylon suture | Covetrus | 29263 | Suturing of muscles and skin |
8-0 nylon suture | S&T | 3192 | Ligation of LAD |
Anesthetic Vaporizers | Vet equip | VE-6047 | Anesthetic support |
Animal physiology monitor | Fujifilm | VEVO 3100 | Monitor heart rate,respiration rate and body temperature |
Betadine solution | PBS animal health | 11205 | Antispetic |
Buprenorphine | Covetrus | 55175 | Analgesic |
Disecting microscope | OMANO | OM2300S-V7 | Binocular |
Electric razor | Wahl | 79300-1001M | Shaving |
Electrode gel | Parker Laboratories | W60698L | Electrically conductive gel |
Ethanol | Decon Laboratories | 22-032-601 | Disinfectant |
Forceps | FST | 11065-07 | Stainless Steel |
Gauze | Curity | CAR-6339-PK | Sterile |
Heat lamp | Satco | S4998 | Post surgery care |
Heating pad | Kent scientific | Surgi-M | Temperature control |
Hot Bead sterilizer | Germinator 500 | 11503 | Sterilization of surgical instrument |
Isoflurane | Covetrus | 29405 | Anesthesia |
Masson’s trichrome staining kit | Thermoscientific | 87019 | Measurement of cardiac Fibrosis |
Micro Needle Holder | FST | 12500-12 | Stainless Steel |
Micro scissors | FST | 15000-02 | Stainless Steel |
Ophthalmic ointment | Dechra | Puralube Vet | Sterile occular lubricant |
Scanning Gel | Parker Laboratories | Aquasonic 100 | Aqueous ultrasound transmission gel |
Scissors | FST | 14060-11 | Stainless Steel |
Small Animal Laryngoscope | Penn-Century | Model LS-2-M | Illuminating the oropharynx |
Small animal ventilator | Harvard apparatus | 557058 | Ventilator support |
Surgical light | Cole parmer | 41723 | Illuminator Width (in): 7 |
Vevo 3100 preclinical imaging platform | Fujifilm | VEVO 3100 | Echocardiography |
VevoLAB software | Fujifilm | VevoLAB 3.2.6 | Echocardiography data analysis |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved