A subscription to JoVE is required to view this content. Sign in or start your free trial.
The tomato seed is an important model for studying genetics and developmental biology during plant reproduction. This protocol is useful for clearing tomato seeds at different developmental stages to observe the finer embryonic structure.
Tomato (Solanum lycopersicum L.) is one of the major cash crops worldwide. The tomato seed is an important model for studying genetics and developmental biology during plant reproduction. Visualization of finer embryonic structure within a tomato seed is often hampered by seed coat mucilage, multi-cell-layered integument, and a thick-walled endosperm, which needs to be resolved by laborious embedding-sectioning. A simpler alternative is to employ tissue clearing techniques that turn the seed almost transparent using chemical agents. Although conventional clearing procedures allow deep insight into smaller seeds with a thinner seed coat, clearing tomato seeds continues to be technically challenging, especially in the late developmental stages.
Presented here is a rapid and labor-saving clearing protocol to observe tomato seed development from 3 to 23 days after flowering when embryonic morphology is nearly complete. This method combines chloral hydrate-based clearing solution widely used in Arabidopsis with other modifications, including the omission of Formalin-Aceto-Alcohol (FAA) fixation, the addition of sodium hypochlorite treatment of seeds, removal of the softened seed coat mucilage, and washing and vacuum treatment. This method can be applied for efficient clearing of tomato seeds at different developmental stages and is useful in full monitoring of the developmental process of mutant seeds with good spatial resolution. This clearing protocol may also be applied to deep imaging of other commercially important species in the Solanaceae.
Tomato (S. lycopersicum L.) is one of the most important vegetable crops around the world, with an output of 186.8 million tons of fleshy fruits from 5.1 million hectares in 20201. It belongs to the large Solanaceae family with about 2,716 species2, including many commercially important crops such as eggplant, peppers, potato, and tobacco. The cultivated tomato is a diploid species (2n = 2x = 24) with a genome size of approximately 900 Mb3. For a long time, great effort has been made toward tomato domestication and breeding by selecting desirable traits from wild Solanum spp. The....
1. Preparation of solutions
When tomato seeds were cleared using a conventional method as in Arabidopsis, dense endosperm cells blocked the visualization of early tomato embryos at 3 DAF and 6 DAF (Figure 3A,B). As the total volume of the embryo increased, a globular embryo was barely distinguishable at 9 DAF (Figure 3C). However, as the seed size continued to increase, its permeability decreased, resulting in a fuzzy heart embryo at 12 DAF (F.......
Compared to mechanical sectioning, the clearing technology is more advantageous for three-dimensional imaging as it retains the integrity of plant tissues or organs16. Conventional clearing protocols are often limited to small samples due to easier penetration of chemical solutions. Tomato seed is a problematic sample for tissue clearing because it is about 70 times larger than an Arabidopsis seed in size and has more permeability barriers. The Arabidopsis seed coat is composed o.......
The authors are grateful to Dr. Jie Le and Dr. Xiufen Song for their helpful suggestions on differential interference contrast microscopy and conventional clearing method, respectively. This research was financed by the National Natural Science Foundation of China (31870299) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences. Figure 2 was created with BioRender.com.
....Name | Company | Catalog Number | Comments |
1,000 µL pipette | GILSON | FA10006M | |
1,000 µL pipette tips | Corning | T-1000-B | |
2 ml centrifuge tube | Axygen | MCT-200-C | |
37% formaldehyde | DAMAO | 685-2013 | |
5,000 µL pipette | Eppendorf | 3120000275 | |
5,000 µL pipette tips | biosharp | BS-5000-TL | |
50 ml centrifuge tube | Corning | 430829 | |
Absolute Ethanol | BOYUAN | 678-2002 | |
Bottle glass | Fisher | FB800-100 | |
Chloral Hydrate | Meryer | M13315-100G | |
Coverslip | Leica | 384200 | |
DIC microscope | Zeiss | Axio Imager A1 | 10x, 20x and 40x magnification |
Disinfectant | QIKELONGAN | 17-9185 | |
Dissecting needle | Bioroyee | 17-9140 | |
Flower nutrient soil | FANGJIE | ||
Forceps | HAIOU | 4-94 | |
Glacial Acetic Acid | BOYUAN | 676-2007 | |
Glycerol | Solarbio | G8190 | |
Magnetic stirrer | IKA | RET basic | |
Micro-Tom | Tomato Genetics Resource Center | LA3911 | |
Orbital shaker | QILINBEIER | QB-206 | |
Seeding substrate | PINDSTRUP | LV713/018-LV252 | Screening:0-10 mm |
Single concave slide | HUABODEYI | HBDY1895 | |
Slide | Leica | 3800381 | |
Stereomicroscope | Leica | S8 APO | 1x to 4x magnification |
Tin foil | ZAOWUFANG | 613 | |
Tween 20 | Sigma | P1379 | |
Vacuum pump | SHIDING | SHB-III | |
Vortex meter | Silogex | MX-S |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved