Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The tomato seed is an important model for studying genetics and developmental biology during plant reproduction. This protocol is useful for clearing tomato seeds at different developmental stages to observe the finer embryonic structure.

Abstract

Tomato (Solanum lycopersicum L.) is one of the major cash crops worldwide. The tomato seed is an important model for studying genetics and developmental biology during plant reproduction. Visualization of finer embryonic structure within a tomato seed is often hampered by seed coat mucilage, multi-cell-layered integument, and a thick-walled endosperm, which needs to be resolved by laborious embedding-sectioning. A simpler alternative is to employ tissue clearing techniques that turn the seed almost transparent using chemical agents. Although conventional clearing procedures allow deep insight into smaller seeds with a thinner seed coat, clearing tomato seeds continues to be technically challenging, especially in the late developmental stages.

Presented here is a rapid and labor-saving clearing protocol to observe tomato seed development from 3 to 23 days after flowering when embryonic morphology is nearly complete. This method combines chloral hydrate-based clearing solution widely used in Arabidopsis with other modifications, including the omission of Formalin-Aceto-Alcohol (FAA) fixation, the addition of sodium hypochlorite treatment of seeds, removal of the softened seed coat mucilage, and washing and vacuum treatment. This method can be applied for efficient clearing of tomato seeds at different developmental stages and is useful in full monitoring of the developmental process of mutant seeds with good spatial resolution. This clearing protocol may also be applied to deep imaging of other commercially important species in the Solanaceae.

Introduction

Tomato (S. lycopersicum L.) is one of the most important vegetable crops around the world, with an output of 186.8 million tons of fleshy fruits from 5.1 million hectares in 20201. It belongs to the large Solanaceae family with about 2,716 species2, including many commercially important crops such as eggplant, peppers, potato, and tobacco. The cultivated tomato is a diploid species (2n = 2x = 24) with a genome size of approximately 900 Mb3. For a long time, great effort has been made toward tomato domestication and breeding by selecting desirable traits from wild Solanum spp. The....

Protocol

1. Preparation of solutions

  1. Prepare FAA fixative by adding 2.5 mL of 37% formaldehyde, 2.5 mL of glacial acetic acid, and 45 mL of 70% ethanol in a 50 mL centrifuge tube. Vortex and store it at 4 °C. Freshly prepare FAA fixative just before use.
    CAUTION: 37% formaldehyde is corrosive and potentially carcinogenic if exposed or inhaled. The fixative must be performed in a fume hood while wearing appropriate personal protective equipment.
  2. Prepare clearing solution by adding.......

Representative Results

When tomato seeds were cleared using a conventional method as in Arabidopsis, dense endosperm cells blocked the visualization of early tomato embryos at 3 DAF and 6 DAF (Figure 3A,B). As the total volume of the embryo increased, a globular embryo was barely distinguishable at 9 DAF (Figure 3C). However, as the seed size continued to increase, its permeability decreased, resulting in a fuzzy heart embryo at 12 DAF (F.......

Discussion

Compared to mechanical sectioning, the clearing technology is more advantageous for three-dimensional imaging as it retains the integrity of plant tissues or organs16. Conventional clearing protocols are often limited to small samples due to easier penetration of chemical solutions. Tomato seed is a problematic sample for tissue clearing because it is about 70 times larger than an Arabidopsis seed in size and has more permeability barriers. The Arabidopsis seed coat is composed o.......

Acknowledgements

The authors are grateful to Dr. Jie Le and Dr. Xiufen Song for their helpful suggestions on differential interference contrast microscopy and conventional clearing method, respectively. This research was financed by the National Natural Science Foundation of China (31870299) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences. Figure 2 was created with BioRender.com.

....

Materials

NameCompanyCatalog NumberComments
1,000 µL pipetteGILSONFA10006M
1,000 µL pipette tipsCorningT-1000-B
2 ml centrifuge tubeAxygenMCT-200-C
37% formaldehydeDAMAO685-2013
5,000 µL pipetteEppendorf3120000275
5,000 µL pipette tipsbiosharpBS-5000-TL
50 ml centrifuge tubeCorning430829
Absolute EthanolBOYUAN678-2002
Bottle glassFisherFB800-100
Chloral HydrateMeryerM13315-100G
CoverslipLeica384200
DIC microscopeZeissAxio Imager A110x, 20x and 40x magnification
DisinfectantQIKELONGAN17-9185
Dissecting needleBioroyee17-9140
Flower nutrient soilFANGJIE
ForcepsHAIOU4-94
Glacial Acetic AcidBOYUAN676-2007
GlycerolSolarbioG8190
Magnetic stirrerIKARET basic
Micro-TomTomato Genetics Resource CenterLA3911
Orbital shakerQILINBEIERQB-206
Seeding substratePINDSTRUPLV713/018-LV252Screening:0-10 mm
Single concave slideHUABODEYIHBDY1895
SlideLeica3800381
StereomicroscopeLeicaS8 APO1x to 4x magnification
Tin foilZAOWUFANG613
Tween 20SigmaP1379
Vacuum pumpSHIDINGSHB-III
Vortex meterSilogexMX-S

References

  1. . FAOSTAT Available from: https://www.fao.org/faostat/en/#data/QCL (2022)
  2. Olmstead, R. G., Bohs, L. A summary of molecular systematic research in Solanaceae: 1982-2006. Acta Horticulturae. 745, 255-268 (2007).
  3. Consortium, T. G.

Explore More Articles

Seed DevelopmentTomatoSolanum LycopersicumClearing ProtocolEmbryo ObservationChemical PreparationFruit HarvestingSeed CollectionSeed FixationSeed DehydrationClearing SolutionMicroscopyDisinfectant SolutionSeed Mucilage RemovalSeed Washing

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved