JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

Abstract

Cancer Research

Translational Orthotopic Models of Glioblastoma Multiforme

Published: February 17th, 2023

DOI:

10.3791/64482

1Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, National Cancer Institute

Abstract

Genetically engineered mouse (GEM) models for human glioblastoma multiforme (GBM) are critical to understanding the development and progression of brain tumors. Unlike xenograft tumors, in GEMs, tumors arise in the native microenvironment in an immunocompetent mouse. However, the use of GBM GEMs in preclinical treatment studies is challenging due to long tumor latencies, heterogeneity in neoplasm frequency, and the timing of advanced grade tumor development. Mice induced via intracranial orthotopic injection are more tractable for preclinical studies, and retain features of the GEM tumors. We generated an orthotopic brain tumor model derived from a GEM model with Rb, Kras, and p53 aberrations (TRP), which develops GBM tumors displaying linear foci of necrosis by neoplastic cells, and dense vascularization analogous to human GBM. Cells derived from GEM GBM tumors are injected intracranially into wild-type, strain-matched recipient mice and reproduce grade IV tumors, therefore bypassing the long tumor latency period in GEM mice and allowing for the creation of large and reproducible cohorts for preclinical studies. The highly proliferative, invasive, and vascular features of the TRP GEM model for GBM are recapitulated in the orthotopic tumors, and histopathology markers reflect human GBM subgroups. Tumor growth is monitored by serial MRI scans. Due to the invasive nature of the intracranial tumors in immunocompetent models, carefully following the injection procedure outlined here is essential to prevent extracranial tumor growth.

Explore More Videos

Artificial Intelligence

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved