A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
CRISPR-Cas systems and anti-CRISPR proteins were integrated into the scheme of Boolean gates in Saccharomyces cerevisiae. The new small logic circuits showed good performance and deepened the understanding of both dCas9/dCas12a-based transcription factors and the properties of anti-CRISPR proteins.
Synthetic gene Boolean gates and digital circuits have a broad range of applications, from medical diagnostics to environmental care. The discovery of the CRISPR-Cas systems and their natural inhibitors-the anti-CRISPR proteins (Acrs)-provides a new tool to design and implement in vivo gene digital circuits. Here, we describe a protocol that follows the idea of the "Design-Build-Test-Learn" biological engineering cycle and makes use of dCas9/dCas12a together with their corresponding Acrs to establish small transcriptional networks, some of which behave like Boolean gates, in Saccharomyces cerevisiae. These results point out the properties of dCas9/dCas12a as transcription factors. In particular, to achieve maximal activation of gene expression, dSpCas9 needs to interact with an engineered scaffold RNA that collects multiple copies of the VP64 activation domain (AD). In contrast, dCas12a shall be fused, at the C terminus, with the strong VP64-p65-Rta (VPR) AD. Furthermore, the activity of both Cas proteins is not enhanced by increasing the amount of sgRNA/crRNA in the cell. This article also explains how to build Boolean gates based on the CRISPR-dCas-Acr interaction. The AcrIIA4 fused hormone-binding domain of the human estrogen receptor is the core of a NOT gate responsive to β-estradiol, whereas AcrVAs synthesized by the inducible GAL1 promoter permits to mimic both YES and NOT gates with galactose as an input. In the latter circuits, AcrVA5, together with dLbCas12a, showed the best logic behavior.
In 2011, researchers proposed a computational method and developed a corresponding piece of software for the automatic design of digital synthetic gene circuits1. A user had to specify the number of inputs (three or four) and fill in the circuit truth table; this provided all the necessary information to derive the circuit structure using techniques from electronics. The truth table was translated into two Boolean formulae via the Karnaugh map method2. Each Boolean formula is made of clauses that describe logic operations (sum or multiplication) among (part of) the circuit inputs and their negations (the literal....
1. Design and construction of the sgRNA/crRNA expression cassette
NOTE: There are two kinds of sgRNA/crRNA expression cassettes: one-termed SNR5210-is composed of the RNA polymerase III-dependent SNR52 promoter, the sgRNA/crRNA sequence, and the SUP4 terminator; another-abbreviated as RGR11-consists of the RNA polymerase II-dependent ADH1 promoter, the RGR (ribozyme-guide RNA-ribozyme) structure that contains two ribozymes (a hammerhead ribozyme-HH, and a hepatitis delta virus ribozyme-HDV) and the sequence of the sgRNA/crRNA in-between, and the AD....
sgRNA/crRNA expression by an RNA polymerase III-type promoter
First, this work addressed the engineering of the transcriptional activation circuit (circuit 1) shown in Figure 1A. It contained three basic components: 1) the gene encoding for yEGFP (the reporter), which was preceded by a series of different synthetic promoters that provided target sites for dCas9/dCas12a-AD; 2) a yeast codon-optimized version of dCas9 or dCas12a fused to an activation domain (VP64 and VP.......
The protocol showed a possible complete workflow for synthetic gene digital circuits, following the "Design-Build-Test-Learn" (DBTL) biological engineering cycle and concerning both dry-lab and wet-lab experiments. Here, we focused on the CRISPR-Cas system, mainly dSpCas9, denAsCas12a, dLbCas12a, and the corresponding anti-CRISPR proteins, by designing and building in S. cerevisiae small transcriptional networks. Some of them mimicked Boolean gates, which are the basic components of digital circuits. All.......
The authors declare no competing financial interest.
We want to thank all the students of the Synthetic Biology lab-SPST, TJU-for their general help, together with Zhi Li and Xiangyang Zhang for their assistance in FACS experiments.
....Name | Company | Catalog Number | Comments |
0.1 mL PCR 8-strip tubes | NEST | 403112 | |
0.2 mL PCR tubes | Axygen | PCR-02-C | |
1.5 mL Microtubes | Axygen | MCT-150-C | |
15 mL Centrifuge tubes | BIOFIL | CFT011150 | |
2 mL Microtubes | Axygen | MCT-200-C | |
50 mL Centrifuge tubes | BIOFIL | CFT011500 | |
Agarose-molecular biology grade | Invitrogen | 75510-019 | |
Ampicillin sodium salt | Solarbio | 69-52-3 | |
Applied biosystems veriti 96-well thermal cycler | Thermo Fisher Scientific | 4375786 | |
AxyPrep DNA gel extraction kit | Axygen | AP-GX-250 | |
BD FACSuite CS&T research beads | BD | 650621 | Fluorescent beads |
BD FACSVerse flow cytometer | BD | - | |
Centrifuge | Eppendorf | 5424 | |
Centrifuge Sorvall ST 16R | Thermo Fisher Scientific | 75004380 | |
E. coli competent cells (Strain DH5α) | Life Technologies | 18263-012 | |
ECL select Western Blotting detection reagent | GE Healthcare | RPN2235 | |
Electrophoresis apparatus | Beijing JUNYI Electrophoresis Co., Ltd | JY300C | |
Flat 8-strip caps | NEST | 406012 | |
Gene synthesis company | Azenta Life Sciences | https://web.azenta.com/zh-cn/azenta-life-sciences | |
Goat anti-Mouse IgG (H+L) cross-adsorbed secondary antibody Alexa Fluor 568 | Invitrogen | A-11004 | |
HiFiScript cDNA synthesis kit | CWBIO | CW2569M | Kit used in step 6.2.2.1 |
Lysate solution (Zymolyase) | zymoresearch | E1004-A | |
Nikon Eclipse 80i fluorescence microscope | Nikon | - | Fluorescence microscope |
Pipet tips—10 μL | Axygen | T-300-R-S | |
Pipet tips—1000 μL | Axygen | T-1000-B-R-S | |
Pipet tips—200 μL | Axygen | T-200-Y-R-S | |
pRSII403 | Addgene | 35436 | |
pRSII404 | Addgene | 35438 | |
pRSII405 | Addgene | 35440 | |
pRSII406 | Addgene | 35442 | |
pRSII424 | Addgene | 35466 | |
pTPGI_dSpCas9_VP64 | Addgene | 49013 | |
Q5 High-fidelity DNApolymerase | New England Biolabs | M0491 | |
Restriction enzyme-Acc65I | New England Biolabs | R0599 | |
Restriction enzyme-BamHI | New England Biolabs | R0136 | |
Restriction enzyme-SacI-HF | New England Biolabs | R3156 | |
Restriction enzyme-XhoI | New England Biolabs | R0146 | |
Roche LightCycler 96 | Roche | - | Real-Time PCR Instrument |
S. cerevisiae CEN.PK2-1C | - | - | The parent strain. The genotype is: MATa; his3D1; leu2-3_112; ura3-52; trp1-289; MAL2-8c; SUC2 |
Stem-Loop Kit | SparkJade | AG0502 | Kit used in step 6.2.1.3 |
T100 Thermal Cycler | BIO-RAD | 186-1096 | |
T4 DNA ligase | New England Biolabs | M0202 | |
T5 Exonuclease | New England Biolabs | M0363 | |
Taq DNA ligase | New England Biolabs | M0208 | |
Taq DNA polymerase | New England Biolabs | M0495 | |
TB Green Premix Ex Taq II (Tli RNaseH Plus)(2x) (SYBR Green I dye) | Takara | RR820Q | |
YeaStar RNA kit | Zymo Research | R1002 | |
β-estradiol | Sigma-Aldrich | E8875 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved