A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
The present protocol combines ex vivo stimulation and flow cytometry to analyze polyfunctional T cell (TPF) profiles in peripheral blood mononuclear cells (PBMCs) within Japanese encephalitis virus (JEV)-vaccinated children. The detection method and flow cytometry color scheme of JEV-specific TPFs were tested to provide a reference for similar studies.
T cell-mediated immunity plays an important role in controlling flavivirus infection, either after vaccination or after natural infection. The "quality" of a T cell needs to be assessed by function, and higher function is associated with more powerful immune protection. T cells that can simultaneously produce two or more cytokines or chemokines at the single-cell level are called polyfunctional T cells (TPFs), which mediate immune responses through a variety of molecular mechanisms to express degranulation markers (CD107a) and secrete interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, or macrophage inflammatory protein (MIP)-1α. There is increasing evidence that TPFs are closely related to the maintenance of long-term immune memory and protection and that their increased proportion is an important marker of protective immunity and is important in the effective control of viral infection and reactivation. This evaluation applies not only to specific immune responses but also to the assessment of cross-reactive immune responses. Here, taking the Japanese encephalitis virus (JEV) as an example, the detection method and flow cytometry color scheme of JEV-specific TPFs produced by peripheral blood mononuclear cells of children vaccinated against Japanese encephalitis were tested to provide a reference for similar studies.
Japanese encephalitis virus (JEV) is an important mosquito-borne virus belonging to the genus Flavivirus within the Flaviviridae family1. Many Asia-Pacific countries have long faced enormous public health challenges due to the huge disease burden caused by Japanese encephalitis (JE), but this has improved dramatically with the increasing availability of various types of vaccinations2. Adaptive protective immune responses evoked by natural infection or vaccination contribute to the prevention and antiviral regulation. Humoral immunity and cell-mediated immunity are classified as adaptive immunity, and the induction of the former has always been regarded as a key strategy in vaccine design, albeit with relatively limited understanding in the past3. However, the role of T cell-mediated immunity in limiting flavivirus dissemination and virus clearance has been increasingly focused on and extensively studied4. Furthermore, T cell immunity is not only indispensable in JEV-specific antiviral responses but also plays a prominent role in cross-protection from secondary infection with heterologous flaviviruses, which has been demonstrated in previous studies5. It is speculated that this effect may bypass potential antibody-mediated enhancement effects in infection5. Of note, such cross-reactive T cell immunity is important, especially in the absence of vaccines and antiviral drugs against flaviviruses. Although many studies have been performed to determine the contribution of T cells in JEV infection with respect to CD4+ and CD8+ T cells6,7, the respective lineages secreting cytokines and their functional diversification remain undetermined, which means the elucidation of the exact functions of helper and killer T cells is hindered.
The scale of their antiviral defenses determines the quality of T cell responses. CD4+ or CD8+ T cells that can compatibly confer two or more functions, including cytokine secretion and degranulation, are characterized as polyfunctional T cells (TPFs) upon specific stimulation at the single-cell level8. CD4+ T cells that produce single or multiple cytokines may have various effects and immune memories. For example, IL-2+ IFN-γ+ CD4+ T cells are more likely to form a long-term effective protective response than IL-2+ CD4+ T cells9, which can be used as an important parameter in evaluating the vaccination effect. The frequency of IL-2+ IFN-γ+ CD4+ T cells is increased in patients with long-term non-progression of acquired immune deficiency syndrome (AIDS), while CD4+ T cells in patients with AIDS progression are more inclined to produce IFN-γ alone due to the promoting effect of IL-2 on T cell proliferation10. Furthermore, a subset of IL-2+ IFN-γ+ TNF-α+ was shown to survive long-term in vivo and synergistically promote the killing function11. Although CD8+ T cells are more likely to exhibit cytotoxic activity, some CD4+ T cells are also equipped with cytotoxic activity as an indirectly detected expression of surface CD107a molecules12. In addition, certain T cell subsets express the chemokine MIP-1α, which is often secreted by monocytes to participate in T cell-mediated neutrophil recruitment13. Similarly, CD8+ TPFs can also be used to characterize the versatility of the above markers. Studies have shown that the prime-boost strategy can effectively induce a prolonged period of TPF protective effects13, which can enhance the protection elicited by vaccination. A central feature in examining the immune system is the ability of memory T cells to facilitate stronger, faster, and more effective responses to secondary viral challenges than naïve T cells. Effector memory T cells (TEM) and central memory T cells (TCM) are important T cell subsets that are often differentiated by the composite expression of CD27/CD45RO or CCR7/CD45RA14. TCM (CD27+ CD45RO+ or CCR7+ CD45RA-) tends to localize in secondary lymphoid tissues, while TEM (CD27- CD45RO+ or CCR7- CD45RA-) localizes in lymphoid and peripheral tissues15,16. TEM provides immediate but not sustained defense, whereas TCM sustains the response by proliferating in the secondary lymphoid organs and generating new effectors17. Thus, given that memory cells can mediate specific and efficient recall responses to viruses, questions arise about the contribution of this subset of polyfunctions.
With the development of flow cytometry technology, it has become common to simultaneously detect markers of more than 10 clusters, phenotypes, and differentiation antigens, which is beneficial to more abundantly annotate the functional immunological features on individual T cells to reduce misinterpretation and difficulties in understanding of T cell phenotypes. This study used ex vivo stimulation and flow cytometry to analyze TPF profiles in peripheral blood mononuclear cells (PBMCs) within JEV-vaccinated children. Applying this approach, the understanding of short- and long-term JEV-specific and even cross-reactive T cell immunity induced by vaccination will be expanded.
Ethical approval for the present study was obtained by the Ethics Committee of Beijing Children's Hospital, Capital Medical University (Approval Number: 2020-k-85). Volunteers were recruited from Beijing Children's Hospital, Capital Medical University. Peripheral venous blood samples were obtained from apparently healthy children (2 years old) who had previously received a prime and boosted vaccination with live-attenuated JE SA14-14-2 vaccine for less than half a year (JE-vaccinated children, n = 5) and unvaccinated children (6 months old, n = 5). Informed consent of human subjects was waived as only the residual samples, after being clinically tested, were used in this study. To protect the privacy of the volunteers, all data were fully anonymized and de-identified.
1. Isolation of PBMCs from peripheral venous blood
2. Stimulation of PBMCs by inactivated JEV particles to induce cytokine expression
3. Ex vivo intracellular staining
4. Flow cytometry set-up
5. Gating strategy and data analysis
NOTE: In the present study, for this analysis, the central memory T cells (TCM of CD8+ or CD4+ T cells as CD27+ CD45RO+ or CCR7+ CD45RA- and the effector memory T cells (TEM) of CD8+ or CD4+ T cells as CD27- CD45RO+ or CCR7- CD45RA- were defined respectively16.
Figure 1 shows the gating strategy used to divide the TCM or TEM of CD8+ or CD4+ T cells from a representative JEV stimulation group of JE-vaccinated children. The FSC-A/SSC-A dot plot is used to identify lymphocytes, and the FSC-A/FSC-W dot plot is used to identify single cells. Viable cells are selected on the live/dead/SSC-A dot plot. The CD3/SSC-A dot plot is used to identify the CD3+ T cells. The CD4/CD8 dot plot is used t...
This protocol represents a feasible flow cytometry-based detection method for TPF profiles in the PBMCs of children vaccinated with the JEV vaccine SA14-14-2. This study used the venous blood PBMCs of both vaccinated and unvaccinated children as research materials. With the stimulation of PBMCs with the JEV antigen, those amplified antigen-specific TPFs can be characterized by multicolor flow cytometry antibody staining. Compared with the conventional enzyme-linked immunospot assay method, flow cyto...
The authors have nothing to disclose.
R.W. was supported by National Natural Science Foundation of China (82002130), Beijing Natural Science Foundation of China (7222059). ZD.X. was supported by the CAMS Innovation Fund for Medical Sciences (2019-I2M-5-026).
Name | Company | Catalog Number | Comments |
anti-human CD28 | Biolegend | 302934 | Antibody |
anti-human CD49d | Biolegend | 304339 | Antibody |
APC anti-human MIP-1α | BD | 551533 | Fluorescent antibody |
Automated cell counter | BIO RAD | TC20 | Cell count |
BD FACSymphony A5 | BD | A5 | flow Cytometry |
BUV395 anti-human CD4 | BD | 563550 | Fluorescent antibody |
BUV737 anti-human CCR7 | BD | 741786 | Fluorescent antibody |
BUV737 anti-human CD27 | BD | 612829 | Fluorescent antibody |
BV421 anti-human CD8 | Biolegend | 344748 | Fluorescent antibody |
BV480 anti-human CD45RA | BD | 566114 | Fluorescent antibody |
BV480 anti-human CD45RO | BD | 566143 | Fluorescent antibody |
BV605 anti-human CD107a | Biolegend | 328634 | Fluorescent antibody |
BV650 anti-human CD3 | BD | 563999 | Fluorescent antibody |
BV785 anti-human IL-2 | Biolegend | 500348 | Fluorescent antibody |
Centrifuge Tube | BD Falcon | BD-35209715 | 15 mL centrifuge tube |
Cytofix/Cytoperm Fixation/Permeabilization Solution Kit | BD | 554714 | Cell fixation and permeabilization |
Density gradient medium | Dakewe | DKW-KLSH-0100 | Ficoll-Paque, human lymphocyte separation medium |
FITC anti-human IFN-γ | Biolegend | 502506 | Fluorescent antibody |
Gibco Fetal Bovine Serum | Thermo Fisher Scientific | 16000-044 | Fetal Bovine Serum |
Gibco RPMI-1640 medium | Thermo Fisher Scientific | 22400089 | cell culture medium |
High-speed centrifuge | Sigma | 3K15 | Cell centrifugation for 15 mL centrifuge tube |
High-speed centrifuge | Eppendorf | 5424R | Cell centrifugation for 1.5 mL Eppendorf (EP) tube |
Microcentrifuge tubes | Axygen | MCT-150-C | 1.5 mL microcentrifuge tube |
PE anti-human TNF-α | Biolegend | 502909 | Fluorescent antibody |
Phosphate Buffered Saline (PBS) | BI | 02-024-1ACS | PBS |
Protein Transport Inhibitor (Containing Brefeldin A, GolgiPlug) | BD | 555029 | blocks intracellular protein transport processes |
Protein Transport Inhibitor (Containing Monensin) | BD | 554724 | blocks intracellular protein transport processes |
Round-bottom test tube | BD Falcon | 352235 | 5 mL test tube |
Trypan Blue Staining Cell Viability Assay Kit | Beyotime | C0011 | Trypan Blue Staining |
Zombie NIR Fixable Viability Dye | Biolegend | 423106 | Dead cell stain |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved