Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Mouse retinal vasculature is particularly interesting in understanding the mechanisms of vascular pattern formation. This protocol automatically measures the diameter of mouse retinal vessels from fluorescent angiography fundus images at a fixed distance from the optic disk.

Abstract

It is important to study the development of retinal vasculature in retinopathies in which abnormal vessel growth can ultimately lead to vision loss. Mutations in the microphthalmia-associated transcription factor (Mitf) gene show hypopigmentation, microphthalmia, retinal degeneration, and in some cases, blindness. In vivo imaging of the mouse retina by noninvasive means is vital for eye research. However, given its small size, mouse fundus imaging is difficult and might require specialized tools, maintenance, and training. In this study, we have developed a unique software enabling analysis of the retinal vessel diameter in mice with an automated program written in MATLAB. Fundus photographs were obtained with a commercial fundus camera system following an intraperitoneal injection of a fluorescein salt solution. Images were altered to enhance contrast, and the MATLAB program permitted extracting the mean vascular diameter automatically at a predefined distance from the optic disk. The vascular changes were examined in wild-type mice and mice with various mutations in the Mitf gene by analyzing the retinal vessel diameter. The custom-written MATLAB program developed here is practical, easy to use, and allows researchers to analyze the mean diameter and mean total diameter, as well as the number of vessels from the mouse retinal vasculature, conveniently and reliably.

Introduction

Possibly the most researched vascular bed in the body is the retinal vasculature. With ever-improving technical sophistication, retinal vasculature is easily photographed in living patients and used in many research fields1. Additionally, the mouse retinal vasculature during development has proven to be a very effective model system for research into the fundamental biology of vascular growth. The primary purpose of the retinal vasculature is to provide the inner portion of the retina with metabolic support through a laminar capillary meshwork that permeates the neural tissue2. Nevertheless, the condition of the retina, ....

Protocol

All experiments were approved by the Icelandic Food and Veterinary Authority (MAST license No. 2108002). All animal studies were conducted according to the Association for Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research. Male and female C57BL/6J and Mitfmi-vga9/+ mice were used in this study. C57BL/6J mice (n = 7) were used as a control. The wild types were commercially obtained (see Table of Materials), but all mutant mic.......

Representative Results

Figure 1 shows the process used to analyze the retinal vasculature, which is applied to mouse FFA images from all the tested mice. A radius that is twice as large as the optic disc is used to measure the intensity of pixels in a circular, clockwise direction from the optic disc's center. It marks pixels with a start or end point when it comes across points above and below a user-specified threshold, respectively. This is repeated 30 times, each time going a little bit further away f.......

Discussion

The present article is the first to present a method to analyze retinal vessel diameter and retinal vasculature from mouse FA images. Since only fundus imaging was utilized to capture images of the retinal vasculature, the method has several drawbacks, one of which is that one can only infer alterations in the superficial layers of that the retinal vasculature in the mice examined in this study; any differences in the deeper layers are yet unknown.

A unique optical coherence tomography angiog.......

Acknowledgements

This work was supported by a Postdoctoral Fellowship grant from the Icelandic Research Fund (217796-052) (A.G.L.) and the Helga Jónsdóttir and Sigurlidi Kristjánsson Memorial Fund (A.G.L and T.E.). The authors thank Prof. Eiríkur Steingrímsson for providing the mice.

....

Materials

NameCompanyCatalog NumberComments
1% Tropicamide (Mydriacyl)Alcon Inc LaboratoriesMydriatic agent
2% MethocelOmniVision Eye CareHydroxypropryl methylcellulose gel
C57BL/6JJackson Laboratory000664Wild type mice
Chanazine 2% (xylazine)Chanelle Animal Health UKBN I21322/IAnesthesia IP
Excel for Microsoft 365Microsoft IncSoftware package
Fluorescein sodium saltSigma-Aldrich28803-100GFluorescent angiography
Matlab 8.0The MathWorks, Inc.Software package
Micron IV rodent fundus cameraPhoenix-Micron40-2200Fundus photography
Phenylephrine 10% w/vBausch & LombMydriatic agent
Phosphate Buffered Saline - 100 tabletsGibco18912-014Dilution
Sigmaplot 13Jandel Scientific SoftwareSoftware package
S-Ketamine, 25 mg/mLPfizer Inc.PAA104470Anesthesia IP

References

  1. Cheung, C. Y., Ikram, M. K., Chen, C., Wong, T. Y. Imaging retina to study dementia and stroke. Progress in Retinal and Eye Research. 57, 89-107 (2017).
  2. Selvam, S., Kumar, T., Fruttiger, M. Retinal vasculature development in health and disease.

Explore More Articles

Retinal Vessel DiameterMouse Fluorescent AngiographyRetinal ImagingMATLAB ProgramRetinal Vascular ConditionsRetinal DiseaseRetinal Vessel AnalysisOptic DiscFluorescein AngiographyImage AnalysisRetinal Vessel Measurement

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved