Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we describe the production and characterization of bioactive agents containing nanodisks. Amphotericin B nanodisks are taken as an example to describe the protocol in a stepwise manner.

Abstract

The term nanodisk refers to a discrete type of nanoparticle comprised of a bilayer forming lipid, a scaffold protein, and an integrated bioactive agent. Nanodisks are organized as a disk-shaped lipid bilayer whose perimeter is circumscribed by the scaffold protein, usually a member of the exchangeable apolipoprotein family. Numerous hydrophobic bioactive agents have been efficiently solubilized in nanodisks by their integration into the hydrophobic milieu of the particle's lipid bilayer, yielding a largely homogenous population of particles in the range of 10-20 nm in diameter. The formulation of nanodisks requires a precise ratio of individual components, an appropriate sequential addition of each component, followed by bath sonication of the formulation mixture. The amphipathic scaffold protein spontaneously contacts and reorganizes the dispersed bilayer forming lipid/bioactive agent mixture to form a discrete, homogeneous population of nanodisk particles. During this process, the reaction mixture transitions from an opaque, turbid appearance to a clarified sample that, when fully optimized, yields no precipitate upon centrifugation. Characterization studies involve the determination of bioactive agent solubilization efficiency, electron microscopy, gel filtration chromatography, ultraviolet visible (UV/Vis) absorbance spectroscopy, and/or fluorescence spectroscopy. This is normally followed by an investigation of biological activity using cultured cells or mice. In the case of nanodisks harboring an antibiotic (i.e., the macrolide polyene antibiotic amphotericin B), their ability to inhibit the growth of yeast or fungi as a function of concentration or time can be measured. The relative ease of formulation, versatility with respect to component parts, nanoscale particle size, inherent stability, and aqueous solubility permits myriad in vitro and in vivo applications of nanodisk technology. In the present article, we describe a general methodology to formulate and characterize nanodisks containing amphotericin B as the hydrophobic bioactive agent.

Introduction

Nascent discoidal high density lipoproteins (HDLs) are naturally occurring progenitors of the far more abundant spherical HDL present in the human circulatory system. These nascent particles, also referred to as pre-ß HDL, possess unique and distinctive structural properties1. Indeed, rather than existing as a spheroidal particle, nascent HDLs are disk-shaped. Extensive structural characterization studies on natural and reconstituted discoidal HDLs have revealed that they are comprised of a phospholipid bilayer whose perimeter is circumscribed by an amphipathic exchangeable apolipoprotein (apo), such as apoA-I. In human lipoprotein metabol....

Protocol

1. Transformation, expression, and purification of scaffold protein component

  1. BL21 bacterial transformation with apoE4-NT containing plasmid
    1. Thaw a tube of BL21 (DE3) competent cells on ice for 10 min.
    2. Once all the ice has melted, mix gently and carefully pipette 50 µL of the cells into a transformation tube on ice.
    3. Add 5 µL containing 50 ng of plasmid DNA (for sequence, see Supplemental Table 1) to the cell mixture. Carefully flick.......

Representative Results

Bioactive agent nanodisk formulation process
In the ampB-nanodisk formulation procedure described, the reaction is considered complete when the sample appearance transitions from turbid to clear (Figure 1). This change indicates that nanodisks have formed and that the bioactive agent has been solubilized. Oftentimes, bioactive agents absorb light in the visible wavelength region (e.g., ampB, curcumin, lutein, coenzyme Q10) and, in these cases, the sample ado.......

Discussion

Formulation of a bioactive agent containing nanodisks provide a convenient method to solubilize otherwise insoluble hydrophobic compounds. Because the product bioactive agent nanodisks are fully soluble in aqueous media, they provide a useful delivery method for a wide range of hydrophobic molecules (Table 1). These include small molecules, natural and synthetic drugs, phytonutrients, hormones, etc. The formulation strategy usually follows a standard protocol that must take into consideration the so.......

Acknowledgements

This work was supported by a grant from the National Institutes of Health (R37 HL-64159).

....

Materials

NameCompanyCatalog NumberComments
Amphotericin BCayman Chemical Company11636ND Formulation & Standard Preparation
AmpicillinFisher ScientificBP17925Transformation & Expansion
ApoE4-NT PlasmidGenScriptN/ATransformation
Baffled FlaskNew Brunswick ScientificN/AExpansion & Expression
BL21 competent E coliNew England BiolabsC2527ITransformation
Centrifuge bottlesNalgene3140-0250Expression
ChloroformFisher ScientificG607-4ND Formulation
DMSOSigma Aldrich472301Standard Prepartation
DymyristoylphosphatidylcholineAvanti Lipids850345PND Formulation
Erlenmeyer flaskBellco BiotechnologyN/AExpansion & Expression
Falcon TubesSarstedt Ag & CoD51588Yeast Viability Assay
Glass borosilicate tubesVWR47729-570ND Formulation
GraphPad (Software)DotmaticsN/AYeast Viability Assay
Heated Sonication BathVWRN/AND Formulaton
Heating and Nitrogen moduleThermo ScientificTS-18822ND Formulation
HiTrap Heparin HP (5 mL)GE Healthcare17-0407-03Purification
Isopropyl β-D-1-thiogalactopyranoside Fisher ScientificBP1755Expression
J-25 CentrifugeBeckman CoulterJ325-IM-2Expression
JA-14 RotorBeckman Coulter339247Expression
LyophilizerLabconco7755030ND Formulation
MethanolFisher ScientificA452-4ND Formulation
Nitrogen gasPraxairUN1066ND Formulation
NZCYM mediaRPI Research ProductsN7200-1000.0Expansion & Expression
Pet-22B vectorGenScriptN/ATransformation
Petri dishFisher ScientificFB0875718Transformation & Expansion
Quartz CuvettesFisher Brand14385 928ASpectral Analysis
Shaking IncubatorNew Brunswick ScientificM1344-0004Transformation, Expansion, & Expression
Slide-A-Lyzer BuoysThermo Scientific66430Purification
SnakeSkin Dialysis TubingThermo Scientific68100Purification
SnakeSkin Dialysis TubingThermo Scientific88243Purification
Sodium ChlorideFisher ScientificS271Purification
Sodium Phosphate dibasicFisher ScientificS374-500Purification
Sodium Phosphate monobasicFisher ScientificBP329-500Purification
Spectra/POR Weighted ClosuresSpectrum Medical Industries132736Purification
SpectrophotometerShimadzu UV-1800220-92961-01spectral analysis
Tabletop CentrifugeBeckman Coulter366816ND Formulation
UVProbe 2.61 (Software)ShimadzuN/ASpectral Analysis
Vacuum filterMillipore9004-70-0Expression & Purification
Vacuum pumpGAST Manufacturing IncDOA-P704-AAExpression & Purification
VortexFisher Scientific12-812ND Formulation
YeastN/ABY4741Yeast Viability Assay
Yeast Extract-Peptone-DextroseBD242820Yeast Viability Assay

References

  1. Fox, C. A., Moschetti, A., Ryan, R. O. Reconstituted HDL as a therapeutic delivery device. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids. 1866 (11), 159025 (2021).
  2. Ong, K. L., Cochran, B. J., Manandhar, B., Thomas, S., Rye, K. A. HDL maturation and ....

Explore More Articles

NanodisksBioactive AgentsFormulationCharacterizationDMPCAmpBApoE4 NTDialysisPhospholipidDrug DeliveryAqueous SolubilityHydrophobic Compounds

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved