A subscription to JoVE is required to view this content. Sign in or start your free trial.
Coulometric respirometry is ideal for measuring the metabolic rate of small organisms. When adapted for Drosophila melanogaster in the present study, measured O2 consumption was within the range reported for wildtype D. melanogaster by previous studies. Per-fly O2 consumption by CASK mutants, which are smaller and less active, was significantly lower than the wildtype.
Coulometric microrespirometry is a straightforward, inexpensive method for measuring the O2 consumption of small organisms while maintaining a stable environment. A coulometric microrespirometer consists of an airtight chamber in which O2 is consumed and the CO2 produced by the organism is removed by an absorbent medium. The resulting pressure decrease triggers electrolytic O2 production, and the amount of O2 produced is measured by recording the amount of charge used to generate it. In the present study, the method has been adapted to Drosophila melanogaster tested in small groups, with the sensitivity of the apparatus and the environmental conditions optimized for high stability. The amount of O2 consumed by wildtype flies in this apparatus is consistent with that measured by previous studies. Mass-specific O2 consumption by CASK mutants, which are smaller and known to be less active, was not different from congenic controls. However, the small size of CASK mutants resulted in a significant reduction in O2 consumption on a per-fly basis. Therefore, the microrespirometer is capable of measuring O2 consumption in D. melanogaster, can distinguish modest differences between genotypes, and adds a versatile tool for measuring metabolic rates.
The ability to measure metabolic rate is crucial for a complete understanding of an organism in its environmental context. For example, it is necessary to measure metabolic rate in order to understand its role in lifespan1, the role of diet in metabolism2, or the threshold for hypoxic stress3.
There are two general approaches to measuring the metabolic rate4. Direct calorimetry measures energy expenditure directly by measuring heat production. Indirect calorimetry measures energy production through other means, often via respirometric measurement of O2 consumption (VO2), CO2 production or both. Although direct calorimetry has been applied to small ectotherms, including Drosophila melanogaster5, respirometry is technically simpler and more commonly used.
Several forms of respirometry have been used successfully to measure metabolic rate in wildtype and mutant D. melanogaster and have provided insight into the metabolic effects of temperature6, social environment3, diet3,7,and neurodevelopmental disorders8. These fall into two classes, which vary considerably in cost and complexity. Manometry is the simplest and least expensive9,10, in which flies are placed into a sealed chamber that contains a CO2 absorbent and which is connected via a thin capillary to a fluid reservoir. As O2 is consumed and CO2 absorbed, pressure in the chamber decreases and fluid is drawn into the capillary. The fluid-filled volume of the capillary is therefore proportional to VO2. More elaborate versions, which compensate for the force exerted by the fluid in the capillary, have also been used on D. melanogaster1. Manometry has the advantages of being simple and inexpensive, but, because it is sensitive to pressure, requires constant environmental conditions. Further, because consumed O2 is not replaced, the partial pressure of O2 (PO2) gradually decreases inside the chambers.
Respirometry using gas analysis is also regularly used for D. melanogaster. In this case, gases are sampled at regular intervals from sealed chambers containing flies and sent to an infrared analyzer2,6,11. This type of apparatus has the advantages that it is available commercially, is less sensitive to environmental conditions, and gases are refreshed during sampling so that PO2 remains stable. However, the equipment can be expensive and complex to operate.
A recently developed coulometric microrespirometer12 provides an inexpensive, sensitive, and stable alternative to existing systems. In practice, an organism is placed into an airtight chamber where it consumes O2 and the exhaled CO2 is removed by an absorbent material, resulting in a net decrease in chamber pressure. When the internal pressure decreases to a pre-set threshold (ON-threshold), current is passed through an electrolytic O2 generator, returning pressure to a second threshold (OFF-threshold) stopping electrolysis. Charge transfer across the O2 generator is directly proportional to the amount of O2 required to re-pressurize the chamber and can therefore be used to measure the O2 consumed by the organism4. The method is highly sensitive, measures VO2 precisely, and the regular replacement of O2 can maintain PO2 at a nearly constant level for hours or days.
The coulometric microrespirometer used in this study employs a multi-modal (pressure, temperature, and humidity) electronic sensor. The sensor is operated by a microcontroller that detects small changes in pressure and activates O2 generation when a low pressure threshold is reached12. This apparatus is assembled from off the shelf parts, can be used with a wide variety of chambers and experimental environments, and has been employed successfully to examine the effects of body mass and temperature on the beetle Tenebrio molitor. In the present study, the microrespirometer has been adapted to measure O2 consumption in D. melanogaster, which has approximately 1% of the mass of T. molitor. Sensitivity of the apparatus has been increased by reducing the threshold for activating O2 generation, and environmental stability has been enhanced by conducting experiments in a temperature-controlled water bath and by maintaining humidity inside the chambers at or near 100%.
The CASK (Calmodulin-dependent Serine Protein Kinase) protein, part of the family of membrane-associated guanylate kinases (MAGUK), is a molecular scaffold in different multi-protein complexes, and mutations in CASK are associated with neurodevelopmental disorders in humans and in D. melanogaster13,14. A viable D. melanogaster mutant, CASKΔ18, disrupts activity of dopaminergic neurons15 and reduces activity levels by more than 50% compared to congenic controls14,16. Because of the reduced activity levels of CASK mutants and the role of catecholamines in regulating metabolism17 we hypothesized that their standard metabolic rate, and therefore O2 consumption, would be dramatically reduced compared to controls.
O2 consumption was measured in CASKΔ18 and their wildtype congeners, w(ex33). Groups of flies were placed into respirometry chambers, O2 consumption was measured, O2 consumption was calculated and expressed on both a mass-specific and per-fly basis. The apparatus recorded VO2 in wildtype flies that was consistent with previous studies, and it could differentiate between the per-fly O2 consumption of wildtype and CASK mutant flies.
1. Fly rearing and collection
2. Setup and assembly of respirometer chamber
3. Setting up controllers and computer
4. Running experiments
5. Finishing experiment
6. Analysis of charge transfer data
7. Analysis of O2 consumption
The pressure and current outputs of the respirometer controller are shown for one chamber in one experiment in Figure 3A. The first, long current pulse pressurized the chamber from ambient pressure (approximately 992 hPa) to the pre-set OFF threshold of 1017 hPa. As the flies consumed O2 and CO2 was absorbed, pressure decreased slowly until it reached the ON threshold of 1016 hPa, which activated current through the O2 generator. In the example shown, the ave...
The above procedure demonstrates measurement of O2 consumption in D. Melanogaster using an electronic coulometric microrespirometer. The resulting data for O2 consumption in wild-type D. melanogaster were within the ranges described in most previous publications using diverse methods (Table 1) although somewhat lower than that reported by others3,6.
Critical steps addressed the t...
The authors declare no conflicts of interest.
We thank Dr. Linda Restifo at the University of Arizona for suggesting testing the O2 consumption of CASK mutants and for sending CASK mutants and their congenic controls. Publication fees were provided by the Departmental Reinvestment Fund from the Biology Department at the University of College Park. Space and some equipment were provided by the Universities at Shady Grove.
Name | Company | Catalog Number | Comments |
19/22 Thermometer Adapter | Wilmad-Labglass | ML-280-702 | Sensor Plug |
2 ml Screwcap Tubes | Fisher | 3464 | O2 generator |
2-Pin Connector | Zyamy | 40PIN-RFB10 | O2 generator: cut to 2-pin |
4-Pin Female Connector | TE Connectivity | 215299-4 | Sensor Plug |
5 ml Polypropylene Tube | Falcon | 352063 | Cut to 5.5 cm and perforated |
50 ml Schlenk Tube 19/22 Joint | Laboy | HMF050804 | Chamber |
6-Conductor Cable | Zenith | 6-Conductor 26 ga | Cable |
6-Pin Female Bulkhead Connector | Switchcraft | 17982-6SG-300 | Controller |
6-Pin Female Connector | Switchcraft | 18982-6SG-522 | Sensor plug |
6-Pin Male Connector | Switchcraft | 16982-6PG-522 | Cable |
800 ul centrifuge tube | Fisher | 05-408-120 | Soda Lime Cartridge |
ABS Plastic Enclosure | Bud Industries | PS-11533-G | Controller |
Arduino Nano Every | Arduino LLC | ABX00028 | Controller |
BME 280 Sensor | DIYMall | FZ1639-BME280 | Sensor Plug |
Circuit Board | Lheng | 5 X 7 cm | Controller |
Copper Sulfate | BioPharm | BC2045 | O2 Generator |
Computer | Azulle | Byte4 | Data Acquisition |
Cotton Rolls | Kajukajudo | #2 | Cut in half to plug fly tubes Cut in quarters for humidity |
Environmental Chamber | Percival | I30 VLC8 | Fly Care |
Epoxy | JB Weld | Plastic Bonder | Secure Electrodes in O2 Generator |
Fly Food | Lab Express | Type R | Fly Care |
Keck Clamps | uxcell | a20092300ux0418 | Secures glass joint of chamber to plug |
Low-Viscosity Epoxy | Loctite | E-30CL | Sensor Plug |
OLED Display | IZOKEE | IZKE31-IIC-WH-3 | Controller |
Platinum Wire 24 ga | uGems | 14349 | O2 generator |
Silicone grease | Dow-Corning | High Vacuum Grease | Seals chamber-plug connection |
Soda Lime | Jorvet | JO553 | CO2 absorption |
Toggle Switch | E-Switch | 100SP1T1B1M1QEH | Controller |
USB Cable | Sabrent | CB-UM63 | Controller |
USB Hub | Atolla | Hub 3.0 | Connect controllers to computer |
Water bath | Amersham | 56-1165-33 | Temperature Control |
Water Bath Tank | Glass Cages | 15-liter rimless acrylic | Bath for Respirometers |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved