JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Neuroscience

Electrophysiology of Laminar Cortical Activity in the Common Marmoset

Published: August 4th, 2023

DOI:

10.3791/65397

1Neuroscience, University of Rochester, 2Brain and Cognitive Sciences, University of Rochester

Custom-built micro-drives enable the sub-millimeter targeting of cortical recording sites with linear silicon arrays.

The marmoset monkey provides an ideal model for examining laminar cortical circuits due to its smooth cortical surface, which facilitates recordings with linear arrays. The marmoset has recently grown in popularity due to its similar neural functional organization to other primates and its technical advantages for recording and imaging. However, neurophysiology in this model poses some unique challenges due to the small size and lack of gyri as anatomical landmarks. Using custom-built micro-drives, researchers can manipulate linear array placement to sub-millimeter precision and reliably record at the same retinotopically targeted location across recording days. This protocol describes the step-by-step construction of the micro-drive positioning system and the neurophysiological recording technique with silicon linear electrode arrays. With precise control of electrode placement across recording sessions, researchers can easily traverse the cortex to identify areas of interest based on their retinotopic organization and the tuning properties of the recorded neurons. Further, using this laminar array electrode system, it is possible to apply a current source density analysis (CSD) to determine the recording depth of individual neurons. This protocol also demonstrates examples of laminar recordings, including spike waveforms isolated in Kilosort, which span multiple channels on the arrays.

The common marmoset (Callithrix jacchus) has quickly grown in popularity as a model to study brain function in recent years. This growing popularity is due to the accessibility of the marmoset's smooth cortex, the similarities in neural functional organization with humans and other primates, and the small size and fast breeding rate1. As this model organism has grown in popularity, there has been rapid development in the neurophysiological techniques suited for use in the marmoset brain. Electrophysiology methods are widely used in neuroscience to study the activity of single neurons in the cortex of both rodents and primates, resu....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The experimental procedures followed the National Institutes of Health Guide for the Care and Use of Laboratory Animals. The protocols for the experimental and behavioral procedures were approved by the University of Rochester Institutional Animal Care and Use Committee.

1. Construction of the micro-drive containing the electrode for recording (Figure 1)

NOTE: Custom-built X-Y stages holding multi-channel linear silicon a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This protocol describes how to build an X-Y electrode stage (Figure 1) that allows for the sub-millimeter targeting of sites and maintains reliable positioning across separate recording sessions. The reliability of the X-Y positioning is illustrated in Figure 6, which demonstrates that two recording sessions conducted a week apart showed a 70.8% overlap in their mean RF locations (Figure 6A). Furthermore, minor adjustments to the mi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Several methods (e.g., chronic, semi-chronic, acute) are currently available for performing neurophysiology experiments in non-human primates. The common marmoset poses unique challenges for neurophysiology experiments due to its small size and lack of gyri as anatomical landmarks. This requires researchers to use neurophysiological landmarks such as the retinotopy and tuning properties of areas of interest to identify the recording targets. Therefore, when initially mapping out a cortical area, daily adjustments to the .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the National Institutes of Health (NIH) grant R01 EY030998 (J.F.M., A.B., and S.C.). This method is based on methods developed in Coop et al. (under review, 2022; https://www.biorxiv.org/content/10.1101/2022.10.11.511827v2.abstract). We would like to thank Dina Graf and members of the Mitchell lab for help with the marmoset care and handling.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NameCompanyCatalog NumberComments
1/4 Hp burr drill bitMcMaster & CarrCat# 43035A32Carbide Bur with 1/4" Shank Diameter, Rounded Cylinder Head, trade Number SC-1, single Cut(https://www.mcmaster.com/products/bur-bits/burs-7/?s=1%2F4%22+bur+bits)
1x1mm Crist GridCrist Instruments1 mm x 1 mm Gridhttps://www.cristinstrument.com/products/implant-intro/grids
91% isopropyl alcoholMedlineN/Ahttps://www.medline.com/product/Medline-Isopropyl-Rubbing-Alcohol/Bulk-Alcohol/Z05-PF03807?question=91%25%20isopropyl%20alcohol
Acquisition BoardOpen-EphysN/Ahttps://open-ephys.org/acquisition-system/eux9baf6a5s8tid06hk1mw5aafjdz1
Bacitracin OintmentMedline: Cosette Pharmaceuticals IncN/Ahttps://www.medline.com/product/Bacitracin-Ointment/Antibiotics/Z05-PF86957?question=bacitr
Blunt straight ForcepsMedlineN/Ahttps://www.medline.com/category/Central-Sterile/Surgical-Instruments/Forceps/Z05-CA16_02_20/products
Bone waxMedlineETHW31Ghttps://www.medline.com/product/Ethicon-Bone-Wax/Bone-Wax/Z05-PF61528?question=bonewax
C&B Metabond Quick Adhesive Cement SystemParkell, Inc.SKU: S380https://www.parkell.com/C-B-Metabond-Quick-Adhesive-Cement-System
ClavamoxMWI Animal HealthN/A
Contact lens solutionBausch and lombVarious sources available
Custom Printed 3D printed partsProtoLabhttps://marmolab.bcs.rochester.edu/resources.html
DB25-G2 25 Pin Male Plug Port Signal ConnectorVarious SourcesDB25-G2 25DB25-G2 25 Pin Male Plug Port Signal 2 Row Terminal Breakout Board Screw Nut Connector
diamond saw attachement for dremmelDremmel545 Diamond Wheelhttps://www.dremel.com/us/en/p/545-26150545ab
Digitizing Head-stagesIntanRHD 32channel (Part #C3314)https://intantech.com/RHD_headstages.html?tabSelect=RHD32ch&yPos=120.80
000305175781
EDOTSigma AldrichProduct # 483028https://www.sigmaaldrich.com/US/en/product/aldrich/483028
Helping HandsHarbor FreightN/Ahttps://www.harborfreight.com/helping-hands-60501.html
Hook Electrical ClipsVarious SourcesN/AHook test Cable wires
Interface Cables (RHD 3-ft (0.9 m) ultra thin SPI cable)Intan Part #C3213https://intantech.com/RHD_SPI_cables.html
Lab jackVarious SourcesN/Ahttps://www.amazon.com/Stainless-Steel-Scissor-Stand-Platform/dp/B07T8FM85H/ref=asc_df_B07T8FM85H/?tag=&linkCode=df0&hvadid=366343
827267&hvpos=&hvnetw=g&hvrand
=2036619536500717246&hvpone
=&hvptwo=&hvqmt=&hvdev=c&hv
dvcmdl=&hvlocint=&hvlocphy=900
5674&hvtargid=pla-795933567991&
ref=&adgrpid=71496544770&th=1
MeloxicamMWI Animal HealthN/A
Micro-driveCrist Instrument3-NRMDhttps://www.cristinstrument.com/products/microdrives/miniature-microdrive-3-nrmd
Multi-channel linear silicon arrays with 64 channel connectorNeuroNexusA1x32-5mm-25-177https://www.neuronexus.com/products/electrode-arrays/up-to-10-mm-depth/
NanoZ Omentics Adapter- 32 ChannelNeuraLynxADPT-NZ-N2T-32https://neuralynx.com/hardware/adpt-nz-n2t-32
NanoZ SystemPlexonNanoZ Impedence Testerhttps://plexon.com/products/nanoz-impedance-tester/
Narishige MicromanipulatorNarishigeStereotaxic Micromanipulatorhttps://usa.narishige-group.com/
Open-Ephys GUIOpen-Ephyshttps://open-ephys.org/
Polyimide Tubing (OD(in): 0.021 / ID(in) 0.018 )Various Sources (Chamfr)Chamfr Cat#HPC01895https://chamfr.com/sellers/teleflex-medical-oem-llc/
Primate ChairCustom made by University of Rochester Machine ShopDesigns onlinehttps://marmolab.bcs.rochester.edu/resources.html
Poly(sodium 4-styrenesulfonate) (PSS)Sigma AldrichProduct # 243051https://www.sigmaaldrich.com/US/en/product/aldrich/243051
RHD USB Interface boardIntanRHD2000 Evaluation Board Version 1.0https://intantech.com/RHD_USB_interface_board.html
Silastic gelWorld Precision Instuments# KWIK-SILLow Toxicity Silicone Adhesive ((https://www.wpiinc.com/kwik-sil-low-toxicity-silicone-adhesive)
Slow release buprenorphineCompounding Pharmacy
Stainless steel wire 36 gaugeMcMaster & CarrCat# 6517K11Round Bend-and-Stay Multipurpose 304 Stainless Steel Wire, Matte Finish, 1-Foot Long, 0.008" Diameter
Stanley 6-Piece Precision Screwdriver SetStanley1.4mm flathead screwdriverhttps://www.amazon.com/Stanley-Tools-6-Piece-Precision-Screwdriver/dp/B076621ZGC/ref=sr_1_3?crid=237VSK5FNFP9N&keywords=
stanley+66-052&qid=1672764369&sprefix=
stanley+66-052%2Caps%2C90&sr=8-3
Steel ScrewsMcMaster & Carrtype 00 stainless steel hex screws and 1/8” in lengthhttps://www.mcmaster.com/
Steel TubeMcMaster & Carr28 gauge stainless steel tubinghttps://www.mcmaster.com/tubing/multipurpose-304-stainless-steel-6/id~0-055/
SuperglueLoctiteSuperGlue Gel Controlhttps://www.loctiteproducts.com/en/products/fix/super-glue/loctite_super_gluegelcontrol.html

  1. Mansfield, K. Marmoset models commonly used in biomedical research. Comparative Medicine. 53 (4), 383-392 (2003).
  2. Solomon, S. G., Rosa, M. G. P. A simpler primate brain: the visual system of the marmoset monkey. Frontiers in Neural Circuits. 8, 96 (2014).
  3. Remington, E. D., Osmanski, M. S., Wang, X. An operant conditioning method for studying auditory behaviors in marmoset monkeys. PLoS One. 7 (10), e47895 (2012).
  4. Walker, J. D., et al. Chronic wireless neural population recordings with common marmosets. Cell Reports. 36 (2), 109379 (2021).
  5. Jendritza, P., Klein, F. J., Fries, P. Multi-area recordings and optogenetics in the awake, behaving marmoset. Nature Communications. 14 (1), 577 (2023).
  6. Pinotsis, D. A., et al. Linking canonical microcircuits and neuronal activity: Dynamic causal modelling of laminar recordings. Neuroimage. 146, 355-366 (2017).
  7. Ludwig, K. A., et al. Poly (3, 4-ethylenedioxythiophene)(PEDOT) polymer coatings facilitate smaller neural recording electrodes. Journal of Neural Engineering. 8 (1), 014001 (2011).
  8. Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C., Kipke, D. R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly (3, 4-ethylenedioxythiophene)(PEDOT) film. Journal of Neural Engineering. 3 (1), 59 (2006).
  9. Lu, T., Liang, L., Wang, X. Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates. Journal of Neurophysiology. 85 (6), 2364-2380 (2001).
  10. Osmanski, M. S., Song, X., Wang, X. The role of harmonic resolvability in pitch perception in a vocal nonhuman primate, the common marmoset (Callithrix jacchus). Journal of Neuroscience. 33 (21), 9161-9168 (2013).
  11. Nummela, S. U., et al. Psychophysical measurement of marmoset acuity and myopia. Developmental Neurobiology. 77 (3), 300-313 (2017).
  12. Paxinos, G., Watson, C., Petrides, M., Rosa, M., Tokuno, H. . The Marmoset Brain in Stereotaxic Coordinates. , (2012).
  13. Mitchell, J. F., Reynolds, J. H., Miller, C. T. Active vision in marmosets: A model system for visual neuroscience. Journal of Neuroscience. 34 (4), 1183-1194 (2014).
  14. Spitler, K. M., Gothard, K. M. A removable silicone elastomer seal reduces granulation tissue growth and maintains the sterility of recording chambers for primate neurophysiology. Journal of Neuroscience Methods. 169 (1), 23-26 (2008).
  15. Jun, J. J., et al. Fully integrated silicon probes for high-density recording of neural activity. Nature. 551 (7679), 232-236 (2017).
  16. Mitzdorf, U. Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. Physiological Reviews. 65 (1), 37-100 (1985).
  17. Coop, S. H., Yates, J. L., Mitchell, J. F. Pre-saccadic neural enhancements in marmoset area MT. bioRxiv. , (2022).
  18. Okun, M., Lak, A., Carandini, M., Harris, K. D. Long term recordings with immobile silicon probes in the mouse cortex. PloS One. 11 (3), e0151180 (2016).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved