Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This study describes a fast and effective method for the cell component analysis of cerebral blood clots through clot dissolving, cell staining, and routine blood examination.

Abstract

Cerebral thrombosis, a blood clot in a cerebral artery or vein, is the most common type of cerebral infarction. The study of the cell components of cerebral blood clots is important for diagnosis, treatment, and prognosis. However, the current approaches to studying the cell components of the clots are mainly based on in situ staining, which is unsuitable for the comprehensive study of the cell components because cells are tightly wrapped in the clots. Previous studies have successfully isolated a fibrinolytic enzyme (sFE) from Sipunculus nudus, which can degrade the cross-linked fibrin directly, releasing the cell components. This study established a comprehensive method based on the sFE to study the cell components of cerebral thrombus. This protocol includes clot dissolving, cell releasing, cell staining, and routine blood examination. According to this method, the cell components could be studied quantitatively and qualitatively. The representative results of experiments using this method are shown.

Introduction

Cerebrovascular disease is one of three major diseases that can threaten human health, among which ischemic cerebrovascular disease accounts for more than 80%. Cerebral thrombosis and cerebral vein thrombosis are the most concerned ischemic cerebrovascular diseases today, mainly caused by cerebral blood clots1,2. If the treatment is not done properly, it will have high disability and mortality rates and a high recurrence rate after discharge3.

Recently, a growing number of studies have shown that the cell components of cerebral blood clots are tightly correla....

Protocol

The research was performed in compliance with the institutional guidelines of the Medical Ethics Committee of Huaqiao University. The cerebral blood clots were surgically removed and collected at Quanzhou First Hospital, affiliated to Fujian Medical University, with informed consent from the patients.

1. Blood clot pretreatment

  1. Place the clots on a clean dish, add 5 mL of physiological saline with a tweezer, shake the dish gently, and remove the saline with a pipet.......

Representative Results

In the initial stage of the degradation process, it was found that the blood clots had a red compact structure, and the working solution was colorless. After incubation for 30 min, the working solution turned light red, which indicated the crossed blood cells were released into the working solution. Most clots were dissolved when lengthening the incubation time to 5 h, and the working solution became light red. On the contrary, there was no significant change in the physiological saline group (NC) even after 10 h incubat.......

Discussion

sFE is a fibrinolytic agent that can degrade the fibrin directly and effectively12,16. Here, sFE was employed to degrade the cross-linked fibrin of the cerebral blood clots, release the enclosed cells within the clots, and analyze the cell components of the clots qualitatively and quantitatively. The microscopy data and routine blood examination indicated that the enclosed cells were released from the blood clots. Furthermore, the cell types and structures of the.......

Acknowledgements

This research was funded by the Science and Technology Bureau of Xiamen City (3502Z20227197), and the Science and Technology Bureau of Fujian Province (No. 2019J01070, No.2021Y0027).

....

Materials

NameCompanyCatalog NumberComments
Agglutination Reaction PlateROTESTRTB-4003
Auto Hematology AnalyzerSYSMEXXNB2
Automatic Vertical Pressure Steam Sterilizer SANYOMLS-3750
Centrifuge Tube (1.5 mL)BiosharpBS-15-M
Clean benchAIRTECHBLB-1600
Constant Temperature IncubatorJINGHONGJHS-400
Culture Dish (100 mm)NEST704001
DHG Series Heating and Drying Oven SENXINDGG-9140AD
Electronic Analytical BalanceDENVERTP-213
Filter Membrane (0.22 µm)Millex GPSLGP033NK
Micro Refrigerated Centrifuge CenceH1650-W
Microscope SlidesCITOGLAS01-30253-50
Milli-Q ReferenceMilliporeZ00QSV0CN
Normal SalineCISENH37022337
Optical MicroscopeNikonECLIPSE E100
ParafilmBemisPM-996
Phosphate-Buffered SalineBeyotimeC0221A
Pipette Tip (1 mL )AxygeneT-1000XT-C
Pipette Tip (200 µL)AxygeneT-200XT-C
Pipettor (1 mL)Thermo Fisher ScientificZY18723
Pipettor (200 µL)Thermo Fisher ScientificZY20280
ScalpelMARTOR23111
Small-sized Vortex OscillatorKylin-BellVORTEX KB3
TweezerHysticHKQS-180
Wright Staining SolutionBeyotimeC0135-500ml

References

  1. Park, D. W., et al. Edoxaban versus dual antiplatelet therapy for leaflet thrombosis and cerebral thromboembolism after TAVR: The ADAPT-TAVR Randomized clinical trial. Circulation. 146 (6), 466-479 (2022).
  2. Devasagayam, S., Wyatt, B., Leyden, J., Kleinig, T.

Explore More Articles

Cerebral ThrombosisCerebral Blood ClotCell ComponentsCell AnalysisFibrinolytic EnzymeFibrinThrombosis MechanismCoagulation System

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved