Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present an automated high-throughput method to quantify neutrophil extracellular traps (NETs) utilizing the live cell analysis system, coupled with a membrane permeability-dependent dual-dye approach.

Abstract

Neutrophils are myeloid-lineage cells that form a crucial part of the innate immune system. The past decade has revealed additional key roles that neutrophils play in the pathogenesis of cancer, autoimmune diseases, and various acute and chronic inflammatory conditions by contributing to the initiation and perpetuation of immune dysregulation through multiple mechanisms, including the formation of neutrophil extracellular traps (NETs), which are structures crucial in antimicrobial defense. Limitations in techniques to quantify NET formation in an unbiased, reproducible, and efficient way have restricted our ability to further understand the role of neutrophils in health and diseases. We describe an automated, real-time, high-throughput method to quantify neutrophils undergoing NET formation using a live cell imaging platform coupled with a membrane permeability-dependent dual-dye approach using two different DNA dyes to image intracellular and extracellular DNA. This methodology is able to help assess neutrophil physiology and test molecules that can target NET formation.

Introduction

Neutrophil extracellular traps (NETs) are web-like chromatin structures extruded from neutrophils in response to various inflammatory stimuli. NETs are composed of DNA, histones, and various anti-microbial proteins/peptides, which trap and kill infectious pathogens and invoke inflammatory responses1.

While NETs are beneficial for host defense against pathogens, they have gathered attention as a potential driver of various autoimmune diseases2, thrombosis3, metabolic diseases4, and metastatic growth of cancers5. As such, in....

Protocol

Neutrophils from healthy human subjects were obtained after informed consent was provided under National Institutes of Health (NIH) Institutional Review Board (IRB) approved protocol. The protocol follows guidelines of NIH human research ethics committee.

1. Staining of the neutrophils and preparation of assay plate

  1. Take peripheral blood with appropriate written informed consent following the guideline of each institute and isolate neutrophils using any desired met.......

Representative Results

This method provides phase contrast, red fluorescent (membrane-permeable dye) and green fluorescent (membrane-impermeable dye) images taken at each timepoint. Along with the NET-forming process, morphological changes are observed in phase contrast and red fluorescent images, and once the membrane is breached, green fluorescence can be observed (Figure 1). In this assay, NET-forming neutrophils are generally round, instead of forming web-like structure. This is because the resolution of the m.......

Discussion

Current methods to quantify NETs ex vivo have several drawbacks that limit our ability to study neutrophils, NETs, and potential therapeutic targets in an unbiased and high-throughput way10,14. For example, direct counting of NET-forming cells after immunofluorescent staining, considered the gold standard for quantification of NETs, is low-throughput and dependent on operator's subjective view. A plate assay detecting the fluorescence of membrane-imp.......

Acknowledgements

We thank the Light Imaging Section in the Office of Science and Technology at the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health. This research was supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (ZIA AR041199).

....

Materials

NameCompanyCatalog NumberComments
AKT inhibitorCalbiochem124028
Clear 96-well plateCorning3596
Live cell analysis systemSartoriusN/AIncucyte Software (v2019B)
Membrane-impermeable DNA green dye Thermo Fisher ScientificS7020
Nuclear red dyeEnzoENZ-52406Neutrophil pellet becomes bluish after staining.
RPMIThermo Fisher Scientific11835030Phenol red containig RPMI can be used.

References

  1. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303 (5663), 1532-1535 (2004).
  2. Wigerblad, G., Kaplan, M. J. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases.....

Explore More Articles

NeutrophilsNeutrophil Extracellular Traps NETsImmune SystemLive Cell ImagingHigh throughput QuantificationAutomated AnalysisMembrane IntegrityCell DeathDrug DevelopmentInflammationAutoimmune DiseasesCancer

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved