A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This protocol describes the Cell-Free Protein Synthesis (CFPS) system used in constructing synthetic cells. It outlines key stages with representative results in different micro-compartments. The protocol aims to establish best practices for diverse laboratories in the synthetic cell community, advancing progress in synthetic cell development.
The Cell-Free Protein Synthesis (CFPS) system has been widely employed to facilitate the bottom-up assembly of synthetic cells. It serves as the host for the core machinery of the Central Dogma, standing as an optimal chassis for the integration and assembly of diverse artificial cellular mimicry systems. Despite its frequent use in the fabrication of synthetic cells, establishing a tailored and robust CFPS system for a specific application remains a nontrivial challenge. In this methods paper, we present a comprehensive protocol for the CFPS system, routinely employed in constructing synthetic cells. This protocol encompasses key stages in the preparation of the CFPS system, including the cell extract, template preparation, and routine expression optimization utilizing a fluorescent reporter protein. Additionally, we show representative results by encapsulating the CFPS system within various micro-compartments, such as monolayer droplets, double-emulsion vesicles, and chambers situated atop supported lipid bilayers. Finally, we elucidate the critical steps and conditions necessary for the successful assembly of these CFPS systems in distinct environments. We expect that our approach will facilitate the establishment of good working practices among various laboratories within the continuously expanding synthetic cell community, thereby accelerating progress in the field of synthetic cell development.
The synthesis of synthetic or artificial cells has emerged as a highly prominent field of interdisciplinary research, attracting substantial interest from scientists across the domains of synthetic biology, chemistry, and biophysics. These scientists are united by the common goal of constructing a minimal living cell1,2,3. The rapid growth of this field has been in step with significant advancements in critical technologies, such as recombinant DNA manipulation4, biomimetic materials5, and microfabrication techniques for compart....
1. Extract preparation
For each new batch of cell extract and T7 RNA polymerase, it is recommended to perform a basic screening of both Mg2+ and K+ concentrations to ensure the optimal performance of the CFPS system. The fluorescence of superfolder GFP can serve as an indicator of the overall yield of the CFPS system under varying conditions, as illustrated in Figure 1A,B. Additionally, a parallel yield comparison of the CFPS system across different compartments is shown in <.......
This manuscript outlines a modified Cell-Free Protein Synthesis (CFPS) system designed for use in various micro-compartments across synthetic cell platforms, including water-in-oil droplets, GUVs, and SLBs. We utilized the standard E. coli recombinant protein expression host strain, BL21(DE3), as the source extract for constructing protein-centric synthetic cell systems. This approach yielded approximately 0.5 mg/mL of protein across different compartments. While other customized extract source strains could be .......
M. Y. acknowledges the funding from the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX22_2803). L.K. is thankful for the support of the Natural Science Research of Jiangsu Higher Education Institutions of China, China (Grant No. 17KJB180003), the Natural Science Foundation of Jiangsu Normal University, China (Grant No. 17XLR037), Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the Jiangsu Specially-Appointed Professor program, China.
....Name | Company | Catalog Number | Comments |
1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC) | Avanti | 850375P | |
1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt)(DOPS) | Avanti | 840035P | |
1,4 dithiothreitol (DTT) | Sigma-Aldrich | 1.11474 | |
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) | Avanti | 850457P | |
3,5-cyclic AMP (cAMP) | Sigma-Aldrich | A9501 | |
50 mL tubes | Eppendorf | Eppendorf Tubes BioBased | |
50% hydrogen peroxide | Sigma-Aldrich | 516813 | |
Acetate | Sigma-Aldrich | A6283 | |
Agar powder | Sigma-Aldrich | 05040 | |
Alanin | Sigma-Aldrich | A4349 | |
Amicon Stirred Cells | MerckMillipore | UFSC05001 | |
Ammonium acetate (NH4OAc) | Sigma-Aldrich | A7262 | |
Arginin | Sigma-Aldrich | A4474 | |
Asparagin | Sigma-Aldrich | A0884 | |
Aspartat | Sigma-Aldrich | A5474 | |
ATP | Roche | 11140965001 | |
Atto 488 DOPE | Sigma-Aldrich | 67335 | |
Atto 647N DOPE | Sigma-Aldrich | 42247 | |
Baffled Erlenmeyer flask | Shuniu | 250 mL, 1000mL | |
Bovine Serum Albumin(BSA) | Roche | 10711454001 | |
Centrifugetube | Eppendorf | Eppendorf Tubes 3810X | |
Centrifugetube rack | Eppendorf | 0030119819 | |
Chemiluminescence and epifluorescence imaging system | Uvitec | Alliance Q9 Advanced | |
Chloroform | Sigma-Aldrich | 288306 | |
Confocal Laser Scanning Microscopy (LSM) | ZEISS | LSM 780 | |
Countess Cell Counting Chamber Slides | Thermo Fisher Scientific | C10283 | |
Coverslip | Thermo Scientific | Menzel BB02400500A113MNZ0 | |
creatine kinase (CK) | Roche | 10127566001 | |
Creatine phosphate (CP) | Sigma-Aldrich | 10621714001 | |
Culture dish | Huanqiu | 90 mm | |
Cystein | Sigma-Aldrich | C5360 | |
Cytidine 5'-triphosphate disodium salt (CTP) | aladdin | C101487 | |
Dialysis membrane | Spectrum | Standard RC Tubing MWCO: 12-14 kD | |
E.Z.N.A. Cycle Pure Kit | Omega Bio-Tek | D6492-01 | |
Electro-Heating Standing-Temperature Cultivator | Yiheng instrument | DHP-9602 | |
Ethylenediaminetetraacetic acid(EDTA) | Biosharp | 1100027 | |
Fluorescent plate reader | BioTek | Synergy 2 | |
Fluorinated oil | Suzhou CChip scientific instrument | 2%HFE7500 | |
Folinic acid | Sigma-Aldrich | 47612 | |
French Press | G.Heinemann | HTU-DIGI-Press | |
Glucose | Sigma-Aldrich | G7021 | |
Glutamat | Sigma-Aldrich | G5667 | |
Glutamin | Sigma-Aldrich | G5792 | |
Glycerol | Sigma-Aldrich | G5516 | |
Glycin | Sigma-Aldrich | G7126 | |
Guanosine 5'-triphosphate sodium salt hydrate(GTP) | Roche | 10106399001 | |
HEPES | Sigma-Aldrich | H3375 | |
HiPrep Q FF 16/10 | Cytiva | 28936543 | |
Histidin | Sigma-Aldrich | H6034 | |
Isoleucin | Sigma-Aldrich | I5281 | |
Isopropyl-β-D-thiogalactopyranoside (IPTG) | Sigma-Aldrich | I5502 | |
K2HPO4 | Sigma-Aldrich | P8281 | |
KH2PO4 | Sigma-Aldrich | P5655 | |
Leucin | Sigma-Aldrich | L6914 | |
Lysin | Sigma-Aldrich | L5501 | |
Magnesium acetate tetrahydrate (Mg(OAc)2 ) | Sigma-Aldrich | M5661 | |
Magnesium chloride(MgCl2) | Sigma-Aldrich | M2670 | |
Methionin | Sigma-Aldrich | M8439 | |
Microcentrifuge | Eppendorf | 5424 R | |
Mineral oil | Sigma-Aldrich | M5904 | |
Mini-PROTEAN Tetra Cell Systems | Bio-Rad | 1645050 | |
Multipurpose Centrifuge | Eppendorf | 5810 R | |
NaN3 | Sigma-Aldrich | S2002 | |
Nucleic Acid & Protein UV-Assay Measurements | IMPLEN | NanoPhotometer N60 | |
NucleoBond Xtra Maxi kit for transfection-grade plasmid DNA | MACHEREY-NAGEL | 740414.5 | |
Nunc-Immuno MicroWell 96 well polystyrene plates | Sigma-Aldrich | P8616 | |
PCR Thermal Cycler | Eppendorf | Mastercycler nexus | |
Peptone | Sigma-Aldrich | 83059 | |
Phenylalanin | Sigma-Aldrich | P8740 | |
Phosphoenolpyruvat (PEP) | GLPBIO | GC44635 | |
PMSF | Sigma-Aldrich | PMSF-RO | |
Polyethylene glycol 8000 (PEG 8000) | Sigma-Aldrich | 89510 | |
Potassium Acetate(KOAc) | Sigma-Aldrich | P5708 | |
Potassium chloride(KCl) | Sigma-Aldrich | P9541 | |
Potassium glutamate (K-glutamate) | Sigma-Aldrich | G1501 | |
Potassium hydroxide(KOH) | Sigma-Aldrich | 221473 | |
Prolin | Sigma-Aldrich | P8865 | |
Pyruvate kinase (PK) | Sigma-Aldrich | P9136 | |
Serin | Sigma-Aldrich | S4311 | |
Shaker | Zhichushakers | ZQZY-AF8 | |
Sodium chloride(NaCl) | Sigma-Aldrich | S5886 | |
Sodium hydroxide(NaOH) | Sigma-Aldrich | S5881 | |
Sucrose | aladdin | S112226 | |
Sulfuric acid | Sigma-Aldrich | 339741 | |
Syringe Filters | Jinteng | 0.45 μm | |
Test tube | Shuniu | 20 mL | |
TGX FastCast Acrylamide Kit, 12% | Bio-Rad | #1610175 | |
ThermoMixer | Eppendorf | ThermoMixer C | |
Threonin | Sigma-Aldrich | T8441 | |
Tris base | Sigma-Aldrich | V900483 | |
tRNA | Roche | 10109550001 | |
Tryptone | Sigma-Aldrich | T7293 | |
Tryptophan | Sigma-Aldrich | T8941 | |
Tyrosin | Sigma-Aldrich | T8566 | |
UTP Trisodium salt (UTP) | aladdin | U100365 | |
Vacuum Pump with Circulated Water System | Zhengzhou Greatwall Scientific Industrial and Trade Co.Ltd | SHB- | |
Valin | Sigma-Aldrich | V4638 | |
Vortex Mixers | Kylin-Bell | Vortex QL-861 | |
Water purification system | MerckMillipore | Direct ultrapure water (Type 1) | |
Yeast extract | Sigma-Aldrich | 70161 | |
β-mercaptoethanol | Sigma-Aldrich | 444203 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved