Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This protocol describes the Cell-Free Protein Synthesis (CFPS) system used in constructing synthetic cells. It outlines key stages with representative results in different micro-compartments. The protocol aims to establish best practices for diverse laboratories in the synthetic cell community, advancing progress in synthetic cell development.

Abstract

The Cell-Free Protein Synthesis (CFPS) system has been widely employed to facilitate the bottom-up assembly of synthetic cells. It serves as the host for the core machinery of the Central Dogma, standing as an optimal chassis for the integration and assembly of diverse artificial cellular mimicry systems. Despite its frequent use in the fabrication of synthetic cells, establishing a tailored and robust CFPS system for a specific application remains a nontrivial challenge. In this methods paper, we present a comprehensive protocol for the CFPS system, routinely employed in constructing synthetic cells. This protocol encompasses key stages in the preparation of the CFPS system, including the cell extract, template preparation, and routine expression optimization utilizing a fluorescent reporter protein. Additionally, we show representative results by encapsulating the CFPS system within various micro-compartments, such as monolayer droplets, double-emulsion vesicles, and chambers situated atop supported lipid bilayers. Finally, we elucidate the critical steps and conditions necessary for the successful assembly of these CFPS systems in distinct environments. We expect that our approach will facilitate the establishment of good working practices among various laboratories within the continuously expanding synthetic cell community, thereby accelerating progress in the field of synthetic cell development.

Introduction

The synthesis of synthetic or artificial cells has emerged as a highly prominent field of interdisciplinary research, attracting substantial interest from scientists across the domains of synthetic biology, chemistry, and biophysics. These scientists are united by the common goal of constructing a minimal living cell1,2,3. The rapid growth of this field has been in step with significant advancements in critical technologies, such as recombinant DNA manipulation4, biomimetic materials5, and microfabrication techniques for compart....

Protocol

1. Extract preparation

  1. Streak the E. coli BL21 (DE3) strain from a glycerol stock onto a Luria Bertani (LB) agar plate and incubate for at least 15 h at 37 °C.
  2. Prepare an overnight preculture by inoculating a single colony from the freshly prepared LB plate into a 50 mL flask of Luria Bertani (LB) medium.
  3. Inoculate 5 mL of preculture into 500 mL of 2xYTPG medium in a 3 L baffled Erlenmeyer flask. Grow it at 37 °C with vigorous shaking (between 220 rpm an.......

Representative Results

For each new batch of cell extract and T7 RNA polymerase, it is recommended to perform a basic screening of both Mg2+ and K+ concentrations to ensure the optimal performance of the CFPS system. The fluorescence of superfolder GFP can serve as an indicator of the overall yield of the CFPS system under varying conditions, as illustrated in Figure 1A,B. Additionally, a parallel yield comparison of the CFPS system across different compartments is shown in <.......

Discussion

This manuscript outlines a modified Cell-Free Protein Synthesis (CFPS) system designed for use in various micro-compartments across synthetic cell platforms, including water-in-oil droplets, GUVs, and SLBs. We utilized the standard E. coli recombinant protein expression host strain, BL21(DE3), as the source extract for constructing protein-centric synthetic cell systems. This approach yielded approximately 0.5 mg/mL of protein across different compartments. While other customized extract source strains could be .......

Acknowledgements

M. Y. acknowledges the funding from the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX22_2803). L.K. is thankful for the support of the Natural Science Research of Jiangsu Higher Education Institutions of China, China (Grant No. 17KJB180003), the Natural Science Foundation of Jiangsu Normal University, China (Grant No. 17XLR037), Priority Academic Program Development of Jiangsu Higher Education Institutions, China, and the Jiangsu Specially-Appointed Professor program, China.

....

Materials

NameCompanyCatalog NumberComments
1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)Avanti850375P
1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt)(DOPS)Avanti840035P
1,4 dithiothreitol (DTT)Sigma-Aldrich1.11474
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)Avanti850457P
3,5-cyclic AMP (cAMP)Sigma-AldrichA9501
50 mL tubesEppendorfEppendorf Tubes BioBased
50% hydrogen peroxideSigma-Aldrich516813
AcetateSigma-AldrichA6283
Agar powderSigma-Aldrich05040
AlaninSigma-AldrichA4349
Amicon Stirred CellsMerckMilliporeUFSC05001
Ammonium acetate (NH4OAc)Sigma-AldrichA7262
ArgininSigma-AldrichA4474
AsparaginSigma-AldrichA0884
AspartatSigma-AldrichA5474
ATPRoche11140965001
Atto 488 DOPESigma-Aldrich67335
Atto 647N DOPESigma-Aldrich42247
Baffled Erlenmeyer flaskShuniu250 mL, 1000mL
Bovine Serum Albumin(BSA)Roche10711454001
CentrifugetubeEppendorfEppendorf Tubes 3810X
Centrifugetube rackEppendorf0030119819
Chemiluminescence and epifluorescence imaging systemUvitecAlliance Q9 Advanced
ChloroformSigma-Aldrich288306
Confocal Laser Scanning Microscopy (LSM)ZEISSLSM 780
Countess Cell Counting Chamber SlidesThermo Fisher ScientificC10283
CoverslipThermo ScientificMenzel BB02400500A113MNZ0
creatine kinase (CK)Roche10127566001
Creatine phosphate (CP)Sigma-Aldrich10621714001
Culture dishHuanqiu90 mm
CysteinSigma-AldrichC5360
Cytidine 5'-triphosphate disodium salt (CTP)aladdinC101487
Dialysis membraneSpectrumStandard RC Tubing MWCO: 12-14 kD
E.Z.N.A. Cycle Pure KitOmega Bio-TekD6492-01
Electro-Heating Standing-Temperature CultivatorYiheng instrumentDHP-9602
Ethylenediaminetetraacetic acid(EDTA)Biosharp1100027
Fluorescent plate readerBioTekSynergy 2
Fluorinated oilSuzhou CChip scientific instrument2%HFE7500
Folinic acidSigma-Aldrich47612
French PressG.HeinemannHTU-DIGI-Press
GlucoseSigma-AldrichG7021
GlutamatSigma-AldrichG5667
GlutaminSigma-AldrichG5792
GlycerolSigma-AldrichG5516
GlycinSigma-AldrichG7126
Guanosine 5'-triphosphate sodium salt hydrate(GTP)Roche10106399001
HEPESSigma-AldrichH3375
HiPrep Q FF 16/10Cytiva28936543
HistidinSigma-AldrichH6034
IsoleucinSigma-AldrichI5281
Isopropyl-β-D-thiogalactopyranoside (IPTG)Sigma-AldrichI5502
K2HPO4Sigma-AldrichP8281
KH2PO4Sigma-AldrichP5655
LeucinSigma-AldrichL6914
LysinSigma-AldrichL5501
Magnesium acetate tetrahydrate (Mg(OAc)2 )Sigma-AldrichM5661
Magnesium chloride(MgCl2)Sigma-AldrichM2670
MethioninSigma-AldrichM8439
MicrocentrifugeEppendorf5424 R
Mineral oilSigma-AldrichM5904
Mini-PROTEAN Tetra Cell SystemsBio-Rad1645050
Multipurpose CentrifugeEppendorf5810 R
NaN3Sigma-AldrichS2002
Nucleic Acid & Protein UV-Assay MeasurementsIMPLENNanoPhotometer N60
NucleoBond Xtra Maxi kit for transfection-grade plasmid DNAMACHEREY-NAGEL740414.5
Nunc-Immuno MicroWell 96 well polystyrene platesSigma-AldrichP8616
PCR Thermal CyclerEppendorfMastercycler nexus
PeptoneSigma-Aldrich83059
PhenylalaninSigma-AldrichP8740
Phosphoenolpyruvat (PEP)GLPBIOGC44635
PMSFSigma-AldrichPMSF-RO
Polyethylene glycol 8000 (PEG 8000)Sigma-Aldrich89510
Potassium Acetate(KOAc)Sigma-AldrichP5708
Potassium chloride(KCl)Sigma-AldrichP9541
Potassium glutamate (K-glutamate)Sigma-AldrichG1501
Potassium hydroxide(KOH)Sigma-Aldrich221473
ProlinSigma-AldrichP8865
Pyruvate kinase (PK)Sigma-AldrichP9136
SerinSigma-AldrichS4311
ShakerZhichushakersZQZY-AF8
Sodium chloride(NaCl)Sigma-AldrichS5886
Sodium hydroxide(NaOH)Sigma-AldrichS5881
SucrosealaddinS112226
Sulfuric acidSigma-Aldrich339741
Syringe FiltersJinteng0.45 μm
Test tubeShuniu20 mL
TGX FastCast Acrylamide Kit, 12%Bio-Rad#1610175
ThermoMixerEppendorfThermoMixer C
ThreoninSigma-AldrichT8441
Tris baseSigma-AldrichV900483
tRNARoche10109550001
TryptoneSigma-AldrichT7293
TryptophanSigma-AldrichT8941
TyrosinSigma-AldrichT8566
UTP Trisodium salt (UTP)aladdinU100365
Vacuum Pump with Circulated Water SystemZhengzhou Greatwall Scientific Industrial and Trade Co.LtdSHB-figure-materials-10350
ValinSigma-AldrichV4638
Vortex MixersKylin-BellVortex QL-861
Water purification systemMerckMilliporeDirect ultrapure water (Type 1)
Yeast extractSigma-Aldrich70161
β-mercaptoethanolSigma-Aldrich444203

References

  1. Elani, Y. Interfacing living and synthetic cells as an emerging frontier in synthetic biology. Angew Chem Int Ed Engl. 60 (11), 5602-5611 (2021).
  2. Cho, E., Lu, Y. Compartmentaliz....

Explore More Articles

Cell free Protein SynthesisCFPSSynthetic CellsBottom up AssemblyCentral DogmaChassisArtificial Cellular MimicryExpression OptimizationFluorescent ReporterMicro compartmentsMonolayer DropletsDouble emulsion VesiclesSupported Lipid BilayersSynthetic Cell Development

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved