Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We investigated skeletal muscle tissue in Bos indicus and crossbred bulls to explain differences in meat quality traits. Warner-Bratzler shear force (WBSF) was found to range from 4.7 kg to 4.2 kg. Myosin heavy chain isoforms revealed differences between animals, and myofibril fragmentation index provided further insights into tenderness (WBSF) variations.

Abstract

This study investigated muscle tissue in Bos indicus and crossbred bulls to explain differences in meat quality traits. Carcass traits, meat quality parameters, and biochemical and molecular investigations of myofibrillar proteins are described. Methods for evaluating pH, intramuscular fat (IMF), meat color (L*, a*, b*), water losses, tenderness, and molecular biology assays have been outlined. Specific procedures detailing calibration, sample preparation, and data analysis for each method are described. These include techniques such as infrared spectroscopy for IMF content, objective tenderness assessment, and electrophoretic separation of MyHC isoforms.

Color parameters were highlighted as potential tools for predicting beef tenderness, a crucial quality trait influencing consumer decisions. The study employed the Warner-Bratzler shear force (WBSF) method, revealing values of 4.68 and 4.23 kg for Nellore and Angus-Nellore (P < 0.01), respectively. Total cooking losses and biochemical analyses, including myofibril fragmentation index (MFI), provided insights into tenderness variations. Muscle fiber types, particularly myosin heavy chain (MyHC) isoforms, were investigated, with a notable absence of MyHC-IIb isoform in the studied Zebu animals. The relationship between MyHC-I and meat tenderness revealed divergent findings in the literature, highlighting the complexity of this association. Overall, the study provides comprehensive insights into the factors influencing meat quality in Bos indicus and crossbred (Bos taurus × Bos indicus) bulls, offering valuable information for the beef industry.

Introduction

Brazil has the largest commercial cattle herd globally, numbering approximately 220 million animals and ranking as the second-largest meat producer, yielding over 9 million metric tons of carcass equivalent annually1. The beef cattle production sector significantly contributes to the national agricultural system, with total annual sales surpassing R$ 55 billion. Since 2004, Brazil has been a key player in the global meat trade, exporting to over 180 countries, which represents ~50% of the world meat trade2.

Meat tenderness stands out as the paramount quality attribute influencing consumer sati....

Protocol

All procedures with animals complied with the ethical research standards established by the Animal Use Ethics Committee (CEUA) of the "Universidade Estadual Paulista Júlio de Mesquita Filho" - UNESP Botucatu Campus, under protocol 0171/2018.

1. Experimental animals

  1. Finish 30 Nellore bulls (Bos indicus) and 30 F1 Angus-Nellore bulls (Bos taurus × Bos indicus), aged 20-24 months, in a feedlot. House both groups of animals .......

Representative Results

Table 1 displays the carcass traits of the two genetic groups investigated in this study. Notably, differences were identified (P < 0.01) in HCW, REA, and BFT, with crossbred animals exhibiting greater values, suggesting a heterosis effect.

Variable¹NelloreF1 Angus x NelloreSEMP-value

Discussion

During carcass evaluation, it is crucial to accurately measure growth and quality traits following a 48 h cooling period to obtain consistent and comparable data. The two biological models exhibited divergent carcass traits, particularly HCW, REA, and BFT, which are consistent with findings reported in other studies. The average HCW of Nellore bulls aligns with Brazilian market preferences, which prioritize greater meat production per animal unit with less fat content25. Conversely, crossbred catt.......

Acknowledgements

This research was funded by FAPESP (grants 2023/05002-3; 2023/02662-2 and 2024/09871-9), CAPES (Finance code 001), CNPq (304158/2022-4), and by PROPE (IEPe-RC grant number 149) of School of Veterinary Medicine and Animal Science, São Paulo State University.

....

Materials

NameCompanyCatalog NumberComments
AcetoneMerk, Darmstadt, GermanyCAS 67-64-1 | 100014solutions used for the electrophoretic separations
Anti-MYH-1 AntibodyMerk, Darmstadt, GermanyMABT846Rat soleus
Anti-Myosin antibodyAbcam, Massachusetts, United Statesab37484Myosin heavy chain
Anti-Myosin-2 (MYH2) AntibodyMerk, Darmstadt, GermanyMABT840Extensor digitorum longus (EDL)
Biological oxygen demand (BOD) incubatorTECNAL, São Paulo, BrazilTE-371/240LMeat aging
Chloroform; absolute analytical reagentSigma-Aldrich, Missouri, United States67-66-3Intramuscular fat
CIELab systemKonica Minolta Sensing, Tokyo, JapanCR-400 colorimeterMeat color
Coomassie BlueSigma-Aldrich, Missouri, United StatesC.I. 42655)Myosin heavy chain
Electric ovenVenâncio Aires, Rio Grande do Sul, BrazilMeat tenderness
EthanolMerk, Darmstadt, Germany64-17-5solutions used for the electrophoretic separations
Ethylenediaminetetraacetic acidSigma-Aldrich, Missouri, United States60-00-4Post-mortem proteolysis
Glass flasksSigma-Aldrich, Missouri, United Statessolutions used for the electrophoretic separations
GlycineSigma-Aldrich, Missouri, United StatesG6761Myosin heavy chain
Infrared spectroscopy - FoodScanFoss NIRSystems, Madson, United StatesFoodScan™ 2Intramuscular fat
Magnesium chlorideSigma-Aldrich, Missouri, United States 7786-30-3Post-mortem proteolysis
MercaptoetanolSigma-Aldrich, Missouri, United StatesM6250Myosin heavy chain
Methanol, absolute analytical reagentSigma-Aldrich, Missouri, United States67-56-1Intramuscular fat
pH meterLineLab, São Paulo, BrazilAKLA 71980Meat pH
PlusOne 2-D Quant KitGE Healthcare ProductCode 80-6483-56Post-mortem proteolysis
PolypropyleneSigma-Aldrich, Missouri, United Statessolutions used for the electrophoretic separations
Potassium chlorideSigma-Aldrich, Missouri, United States7447-40-7Post-mortem proteolysis
Potassium phosphateSigma-Aldrich, Missouri, United StatesP0662Post-mortem proteolysis
R softwareVienna, Austriaversion 3.6.2Data analysis
Sodium azideSigma-Aldrich, Missouri, United States26628-22-8Post-mortem proteolysis
Sodium dodecyl sulfate (SDS)Sigma-Aldrich, Missouri, United States822050Myosin heavy chain
SpectrophotometerPerkin Elmer, Shelton, United StatesPerkin Elmer
Lambda 25 UV/Vis
Post-mortem proteolysis
Statistical Analysis SystemSAS, Cary, North Carolina, United Statesversion 9.1,Data analysis
Texture AnalyzerAMETEK Brookfield, Massachusetts, United
States
CTXMeat tenderness
Tris(hydroxymethyl)aminomethaneSigma-Aldrich, Missouri, United States77-86-1Myosin heavy chain
UltrafreezerIndrel Scientific, Londrina, Paraná, Brazil.INDREL IULT 335 D - LCDSample storage
Ultrapure waterElga PURELAB Ultra Ionic systemsolutions used for the electrophoretic separations
Ultra-Turrax high shear mixerMarconi – MA102/E, Piracicaba, São Paulo, BrazilPost-mortem proteolysis

References

  1. Nunes, C. L. d. e. C., Pflanzer, S. B., Rezende-de-Souza, J. H., Chizzotti, M. L. Beef production and carcass evaluation in Brazil. Anim Front. 14 (2), 15-20 (2024).
  2. MAPA. . Projeções Do Agronegócio: Brasil 2017/18 a 2027/28 Projeções de Longo....

Explore More Articles

Longissimus MuscleMeat QualityBos IndicusCrossbred BullsCarcass TraitsIntramuscular Fat IMFPH EvaluationMeat ColorTenderness AssessmentWarner Bratzler Shear Force WBSFMyofibrillar ProteinsMyosin Heavy Chain MyHC IsoformsMuscle Fiber TypesBiochemical AnalysesBeef Industry

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved