Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We describe a general protocol and systematic design that could be applied to separate and recognize complex components in alpine yarrow herb, Achillea millefolium L., a Chinese herbal medicine.

Abstract

Chinese herbal medicine is complex and has numerous unknown compounds, making qualitative research crucial. Ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) is the most widely used method in qualitative analysis of compounds. The method includes standardized and programmed protocols for sample pretreatment, MS tune, MS acquisition, and data processing. The sample pretreatments include collection, pulverization, solvent extraction, ultrasound, centrifugation, and filtration. Data post-processing was described in detail and includes data importing, self-established database construction, method establishment, data processing, and other manual operations. The above-ground part of the alpine yarrow herb, Achillea millefolium L., is used to treat inflammation, gastrointestinal disturbances, and pain and its 3-oxa-guaianolides could be useful leads for anti-inflammatory drug development. Three representative compounds in AML were identified, combining TOF-MS with a self-established database. Moreover, the differences from existing literature, liquid-phase parameter optimization, scan mode selection, ion source suitability, collision energy adjustment, isomer screening, method limitation, and possible solutions were discussed. This standardized analysis method is universal and can be applied to identify complex compounds in Chinese herbal medicine.

Introduction

Chinese medicine has accumulated the richest empirical knowledge in the world1. Qualitative analysis of chemical components in traditional Chinese herbal medicine has become a crucial topic in research2. Distinguishing chemical differences in Chinese herbal medicine is difficult because of category complexity and origin diversification3. The major compound types in Chinese herbal medicine include alkaloids, saponins, flavonoids, anthraquinones, terpenoids, coumarins, lignans, polysaccharides, polypeptides, and proteins1. However, the separation of compounds and identificati....

Protocol

1. Sample pretreatment

  1. Collection of Chinese herbal medicine AML
    1. Plant alpine yarrow Herb, Achillea millefolium L. (AML) seeds in the ground in February. Collect the above-ground part of AML in July of the same year (Figure 1A).
      NOTE: AML used in this paper was collected in a mountainous area at an altitude of 400 m in Mianyang, Sichuan, China.
  2. Drying treatment
    1. Wash all the collected AML in pure wat.......

Representative Results

Alpine yarrow herb was used as a model to display the representative result. As shown in Figure 4G, quercetin-3'-O-glucoside with m/z = 463.08935 transformed into an intermediate with m/z = 300.02828 via loss of a hexose molecule during the hydrolysis reaction. In another pathway, the break of the C-C bond in the flavonoid structure skeleton led to the formation of an intermediate with m/z = 223.06232, where hydroxymethyl and adjacent hydroxy in the hexose unit disappeared. Moreover, the.......

Discussion

High-resolution mass spectrometry combined with a self-established database offers a systematic qualitative technology to identify chemical components in Chinese herbal medicine. Unlike a commercial database, which contains common traditional Chinese medicine, a self-established database that uses compounds reported in the literature provides more accuracy in the analysis of rare or ethnic medicine16. Similar methods have been applied to other areas of research, including finished drug products

Acknowledgements

This work was funded by China Postdoctoral Science Foundation (2022MD713780), Inheritance and Innovation Team of TCM Treatment of Immune Diseases, Chongqing Medical Scientific Research Project (Joint project of Chongqing Health Commission and Science and Technology Bureau) (2022DBXM007), and the Natural Science Foundation of Chongqing (cstc2018jcyjAX0370). A special project for performance incentive and guidance of Chongqing Scientific Research Institute (cstc2022jxjl120005, cstc2021jxjl130021).

....

Materials

NameCompanyCatalog NumberComments
chloroformSinopharm Chemical ReagentCo., LtdCAS 67-66-3
ethyl acetateChuandongChemicalCAS 141-78-6
liquid chromatographWatersACQUITY Class 1 plus
MassLynxWatersV4.2MS control software
MethanolChuandongChemicalCAS 67-56-1
n-butyl alcoholChuandongChemicalCAS 71-36-3
petroleum etherChuandongChemicalCAS 8032-32-4
Quadrupole time-of-flight mass spectrometryWatersSYNAPT XS
UNIFIWatersData analysis software

References

  1. Cai, Z., Lee, F., Wang, X., Yu, W. A capsule review of recent studies on the application of mass spectrometry in the analysis of chinese medicinal herbs. Journal of Mass Spectrometry. 37 (10), 1013-1024 (2002).
  2. Zhu, C., Li, X., Zhang, B., Lin, Z.

Explore More Articles

Ultra high performance Liquid ChromatographyMass SpectrometryChinese Herbal MedicineUPLC Q TOF MSData ProcessingSelf established DatabaseAchillea Millefolium L3 oxa guaianolidesAnti inflammatory

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved